Skip to main content
Log in

Treatment with a Potent Cathepsin K Inhibitor Preserves Cortical and Trabecular Bone Mass in Ovariectomized Monkeys

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The cysteine protease cathepsin K is involved in osteoclast-mediated bone resorption. We evaluated the effect of daily oral dosing of an inhibitor of human cathepsin K (SB-462795 [relacatib]) for 9 months on bone turnover, mass, and architecture in estrogen-deficient cynomolgus monkeys. Ovariectomized animals were treated orally with relacatib at 1, 3, or 10 mg/kg/day, or oral vehicle plus alendronate at 0.05 mg/kg by IV injection once every 2 weeks. The control groups, ovariectomized and sham-ovariectomized animals, received vehicle (all groups n = 20 animals). Samples for biomarker analysis were collected at various times, bone mass changes were evaluated at 6 and 9 months of treatment, and histomorphometric analysis was performed at 9 months. Relacatib significantly reduced urinary N-telopeptide excretion within 1 week of treatment at all dose levels, an effect that was maintained at the highest dose level. At some time points bone formation markers were elevated at the lowest dose of relacatib. Animals treated with relacatib had dose-dependent preservation of areal bone mineral density reaching statistical significance in distal femur. In femur neck there was significant preservation of total volumetric BMD (vBMD) by relacatib. By histomorphometry, relacatib reduced indices of bone resorption and formation at cancellous sites as did alendronate. In cortical bone, osteonal bone formation rate was reduced by alendronate but preserved at low and medium doses of relacatib. Thus, relacatib preserved cortical and cancellous bone mass in ovariectomized monkeys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. National Osteoporosis Foundation (2002) America’s bone health: the state of osteoporosis and low bone mass in our nation. National Osteoporosis Foundation, Washington, DC

    Google Scholar 

  2. Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38(2 Suppl 1):4–9

    Article  Google Scholar 

  3. Yasuda Y, Kaleta J, Bromme D (2005) The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug Deliv Rev 57(7):973–993

    Article  PubMed  CAS  Google Scholar 

  4. Grey A, Reid IR (2005) Emerging and potential therapies for osteoporosis. Expert Opin Investig Drugs 14(3):265–278

    Article  PubMed  CAS  Google Scholar 

  5. Sambrook PN, Rodriguez JP, Wasnich RD, Luckey MM, Kaur A, Meng L, Lombardi A (2004) Alendronate in the prevention of osteoporosis: 7-year follow-up. Osteoporos Int 15(6):483–488

    Article  PubMed  CAS  Google Scholar 

  6. Nguyen ND, Eisman JA, Nguyen TV (2006) Anti-hip fracture efficacy of bisphosphonates: a Bayesian analysis of clinical trials. J Bone Miner Res 21(1):340–349

    Article  PubMed  CAS  Google Scholar 

  7. Schneider JP (2006) Should bisphosphonates be continued indefinitely? An unusual fracture in a healthy woman on long-term alendronate. Geriatrics 61(1):31–33

    PubMed  Google Scholar 

  8. Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90(3):1294–1301

    Article  PubMed  CAS  Google Scholar 

  9. Porras AG, Holland SD, Gertz BJ (1999) Pharmacokinetics of alendronate. Clin Pharmacokinet 36(5):315–328

    Article  PubMed  CAS  Google Scholar 

  10. Marshall JK (2002) The gastrointestinal tolerability and safety of oral bisphosphonates. Exp Opin Drug Safety 1(1):71–78

    Article  CAS  Google Scholar 

  11. Reginster JY, Felsenberg D, Cooper C, Stakkestad JA, Miller PD, Kendler DL, Adami S, McClung MR, Bolognese MA, Civitelli R, Dumont E, Bonvoisin B, Recker RR, Delmas PD (2006) A new concept for bisphosphonate therapy: a rationale for the development of monthly oral dosing of ibandronate. Osteoporos Int 17(2):159–166

    Article  PubMed  CAS  Google Scholar 

  12. Reginster JY (2006) Adherence and persistence: impact on outcomes and health care resources. Bone 38(2 Suppl 2):18–21

    Article  Google Scholar 

  13. Bilezikian JP (2005) Anabolic therapy for osteoporosis. Int J Fertil Womens Med 50(2):53–60

    PubMed  CAS  Google Scholar 

  14. Rubin MR, Bilezikian JP (2005) Parathyroid hormone as an anabolic skeletal therapy. Drugs 65(17):2481–2498

    Article  PubMed  CAS  Google Scholar 

  15. Poole KE, Reeve J (2005) Parathyroid hormone—a bone anabolic and catabolic agent. Curr Opin Pharmacol 5(6):612–617

    Article  PubMed  CAS  Google Scholar 

  16. Hodsman AB, Bauer DC, Dempster DW, Dian L, Hanley DA, Harris ST, Kendler DL, McClung MR, Miller PD, Olszynski WP, Orwoll E, Yuen CK (2005) Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr Rev 26(5):688–703

    Article  PubMed  CAS  Google Scholar 

  17. Bilezikian JP, Rubin MR, Finkelstein JS (2005) Parathyroid hormone as an anabolic therapy for women and men. J Endocrinol Invest 28(8 Suppl):41–49

    PubMed  CAS  Google Scholar 

  18. Lecart MP, Bruyere O, Reginster JY (2004) Combination/sequential therapy in osteoporosis. Curr Osteoporos Rep 2(4):123–130

    Article  PubMed  Google Scholar 

  19. Black DM, Bilezikian JP, Ensrud KE, Greenspan SL, Palermo L, Hue T, Lang TF, McGowan JA, Rosen CJ (2005) One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N Engl J Med 353(6):555–565

    Article  PubMed  CAS  Google Scholar 

  20. Takahashi N, Udagawa M, Takami M, Suda T (2002) Cells of bone: osteoclast generation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, 2nd edn. Academic Press, San Diego, pp 109–126

    Google Scholar 

  21. Wang D, Miller SC, Kopeckova P, Kopecek J (2005) Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev 57(7):1049–1076

    Article  PubMed  CAS  Google Scholar 

  22. Väänänen K, Zhao H (2002) Osteoclast function: biology and mechanism. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, 2nd edn. Academic Press, San Diego, pp 127–139

    Google Scholar 

  23. Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M (1996) Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem 271(21):12511–12516

    Article  PubMed  CAS  Google Scholar 

  24. Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I (1999) Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14(10):1654–1663

    Article  PubMed  CAS  Google Scholar 

  25. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95(23):13453–13458

    Article  PubMed  CAS  Google Scholar 

  26. Marquis RW, Ru Y, Yamashita DS, Oh HJ, Yen J, Thompson SK, Carr TJ, Levy MA, Tomaszek TA, Ijames CF, Smith WW, Zhao B, Janson CA, Abdel-Meguid SS, D’Alessio KJ, McQueney MS, Veber DF (1999) Potent dipeptidylketone inhibitors of the cysteine protease cathepsin K. Bioorg Med Chem 7(4):581–588

    Article  PubMed  CAS  Google Scholar 

  27. Votta BJ, Levy MA, Badger A, Bradbeer J, Dodds RA, James IE, Thompson S, Bossard MJ, Carr T, Connor JR, Tomaszek TA, Szewczuk L, Drake FH, Veber DF, Gowen M (1997) Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J Bone Miner Res 12(9):1396–1406

    Article  PubMed  CAS  Google Scholar 

  28. Yamashita DS, Marquis RW, Xie R, Nidamarthy SD, Oh HJ, Jeong JU, Erhard KF, Ward KW, Roethke TJ, Smith BR, Cheng HY, Geng X, Lin F, Offen PH, Wang B, Nevins N, Head MS, Haltiwanger RC, Narducci Sarjeant AA, Liable-Sands LM, Zhao B, Smith WW, Janson CA, Gao E, Tomaszek T, McQueney M, James IE, Gress CJ, Zembryki DL, Lark MW, Veber DF (2006) Structure activity relationships of 5-, 6-, and 7-methyl-substituted azepan-3-one cathepsin K inhibitors. J Med Chem 49(5):1597–1612

    Article  PubMed  CAS  Google Scholar 

  29. Kumar S, Dare L, Vasko-Moser JA, James IE, Blake SM, Rickard DJ, Hwang SM, Tomaszek T, Yamashita DS, Marquis RW, Oh H, Jeong JU, Veber DF, Gowen M, Lark MW, Stroup G (2006) A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys. Bone 40(1):122–131

    Article  PubMed  CAS  Google Scholar 

  30. Kumar S, Rehm S, Boyce R, Birmingham J, Stroup G, Jerome C, Wier P (2005) Treatment of young male monkeys for 12 months with a highly potent inhibitor of Cathepsin K inhibits bone resorption and increases bone mineral density and strength. J Bone Miner Res 20(Suppl 1):S81

    Google Scholar 

  31. Jerome CP (1998) Primate models of osteoporosis. Lab Anim Sci 48(6):618–622

    PubMed  CAS  Google Scholar 

  32. Rosen CJ, Hochberg MC, Bonnick SL, McClung M, Miller P, Broy S, Kagan R, Chen E, Petruschke RA, Thompson DE, de Papp AE (2005) Treatment with once-weekly alendronate 70 mg compared with once-weekly risedronate 35 mg in women with postmenopausal osteoporosis: a randomized double-blind study. J Bone Miner Res 20(1):141–151

    Article  PubMed  CAS  Google Scholar 

  33. Bayne K (1996) Revised guide for the care and use of laboratory animals available. American Physiological Society. Physiologist 39(4):199, 208–211

  34. Thompson DD, Seedor JG, Quartuccio H, Solomon H, Fioravanti C, Davidson J, Klein H, Jackson R, Clair J, Frankenfield D et al (1992) The bisphosphonate, alendronate, prevents bone loss in ovariectomized baboons. J Bone Miner Res 7(8):951–960

    Article  PubMed  CAS  Google Scholar 

  35. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2(6):595–610

    Article  PubMed  CAS  Google Scholar 

  36. Jerome CP, Power RA, Obasanjo IO, Register TC, Guidry M, Carlson CS, Weaver DS (1997) The androgenic anabolic steroid nandrolone decanoate prevents osteopenia and inhibits bone turnover in ovariectomized cynomolgus monkeys. Bone 20(4):355–364

    Article  PubMed  CAS  Google Scholar 

  37. Jerome CP, Burr DB, Van Bibber T, Hock JM, Brommage R (2001) Treatment with human parathyroid hormone (1–34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 28(2):150–159

    Article  PubMed  CAS  Google Scholar 

  38. Parfitt A, Foldes J (1991) The ambiguity of interstitial bone thickness: a new approach to the mechanism of trabecular thinning. Bone 12:119–122

    Article  PubMed  CAS  Google Scholar 

  39. Deaton DN, Kumar S (2004) Cathepsin K inhibitors: their potential as anti-osteoporosis agents. Prog Med Chem 42:245–375

    Article  PubMed  CAS  Google Scholar 

  40. Jerome CP, Peterson PE (2001) Nonhuman primate models in skeletal research. Bone 29(1):1–6

    Article  PubMed  CAS  Google Scholar 

  41. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD (1996) Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 11(3):337–349

    PubMed  CAS  Google Scholar 

  42. Stroup GB, Hoffman SJ, Vasko-Moser JA, Lechowska BA, Jenkins EL, Dare LC, Gowen M (2001) Changes in bone turnover following gonadotropin-releasing hormone (GnRH) agonist administration and estrogen treatment in cynomolgus monkeys: a short-term model for evaluation of antiresorptive therapy. Bone 28(5):532–537

    Article  PubMed  CAS  Google Scholar 

  43. Bonnick SL, Shulman L (2006) Monitoring osteoporosis therapy: bone mineral density, bone turnover markers, or both? Am J Med 119(4 Suppl 1):S25–S31

    Article  PubMed  Google Scholar 

  44. Chesnut CH 3rd, Rosen CJ (2001) Reconsidering the effects of antiresorptive therapies in reducing osteoporotic fracture. J Bone Miner Res 16(12):2163–2172

    Article  PubMed  CAS  Google Scholar 

  45. McClung MR, San Martin J, Miller PD, Civitelli R, Bandeira F, Omizo M, Donley DW, Dalsky GP, Eriksen EF (2005) Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch Intern Med 165(15):1762–1768

    Article  PubMed  CAS  Google Scholar 

  46. Jerome CP, Carlson CS, Register TC, Bain FT, Jayo MJ, Weaver DS, Adams MR (1994) Bone functional changes in intact, ovariectomized, and ovariectomized, hormone-supplemented adult cynomolgus monkeys (Macaca fascicularis) evaluated by serum markers and dynamic histomorphometry. J Bone Miner Res 9(4):527–540

    PubMed  CAS  Google Scholar 

  47. Recker R, Masarachia P, Santora A, Howard T, Chavassieux P, Arlot M, Rodan G, Wehren L, Kimmel D (2005) Trabecular bone microarchitecture after alendronate treatment of osteoporotic women. Curr Med Res Opin 21(2):185–194

    Article  PubMed  CAS  Google Scholar 

  48. Jerome CP, Johnson CS, Vafai HT, Kaplan KC, Bailey J, Capwell B, Fraser F, Hansen L, Ramsay H, Shadoan M, Lees CJ, Thomsen JS, Mosekilde L (1999) Effect of treatment for 6 months with human parathyroid hormone (1–34) peptide in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 25(3):301–309

    Article  PubMed  CAS  Google Scholar 

  49. Rizzoli R (2006) Long-term outcome of weekly bisphosphonates. Clin Orthop Relat Res 443:61–65

    Article  PubMed  Google Scholar 

  50. Ravn P (2002) Bisphosphonates for prevention of postmenopausal osteoporosis. Dan Med Bull 49(1):1–18

    PubMed  CAS  Google Scholar 

  51. Deaton DN, Tavares FX (2005) Design of cathepsin k inhibitors for osteoporosis. Curr Top Med Chem 5(16):1639–1675

    Article  PubMed  CAS  Google Scholar 

  52. Jerome C, Missbach M, Gamse R (2005) AAE581, a novel cathepsin K inhibitor, protects against ovariectomy-induced bone loss in non-human primates, in part by stimulation of periosteal bone formation. J Bone Miner Res 20(Suppl 1):S46

    Google Scholar 

  53. Stroup G, Dare L, Vasko-Moser J, Hoffman S, Kumar S (2006) Repeat daily dosing with a highly potent inhibitor of cathepsin K results in significant, transient elevation of plasma PTH in cynomolgus monkeys. J Bone Miner Res 21(Suppl 1):S160

    Google Scholar 

  54. Itabashi A, Kurata N, Sugita Y, Kawai Y (2006) Balicatib, a novel cathepsin K-inhibitor, increases serum intact PTH beyond diurnal patterns following 14-daily administration in Japanese postmenopausal women. J Bone Miner Res 21(Suppl 1):S24

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Pam Peterson for her tremendous assistance in the production of this manuscript. We would also like to thank Dennis Yamashita and William Clark for compound synthesis and Yanli Deng for pharmacokinetic studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Jerome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroup, G.B., Kumar, S. & Jerome, C.P. Treatment with a Potent Cathepsin K Inhibitor Preserves Cortical and Trabecular Bone Mass in Ovariectomized Monkeys. Calcif Tissue Int 85, 344–355 (2009). https://doi.org/10.1007/s00223-009-9279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9279-x

Keywords

Navigation