Skip to main content
Log in

Absolute Fracture-Risk Prediction by a Combination of Calcaneal Quantitative Ultrasound and Bone Mineral Density

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Quantitative ultrasound measurement (QUS) and bone mineral density (BMD) have each been shown to predict fracture risk in women. The present study examined whether a combination of QUS and BMD could improve the predictive accuracy of fracture risk. This is a population-based prospective study which involved 454 women and 445 men aged 62–89 years. Femoral neck BMD (FNBMD) was measured by DXA and calcaneal QUS was measured as broadband ultrasound attenuation (BUA) by a CUBA sonometer. Fragility fracture was ascertained by X-ray reports during the follow-up period, which took place between mid-1989 and 2009. During the follow-up period (median 13 years, range 11–15), 75 men and 154 women sustained a fragility fracture. In women, the model with FNBMD and BUA had a higher AUC compared to that without BUA (0.73 vs. 0.71 for any fracture, 0.81 vs. 0.77 for hip fracture, and 0.72 vs. 0.70 for vertebral fracture). Reclassification analysis yielded a total net reclassification improvement of 7.3%, 11.1%, and 5.2% for any, hip, and vertebral fractures, respectively. For men, the addition of BUA to FNBMD did not improve the predictive power for any, hip, or vertebral fracture. These results suggest that calcaneal QUS is an independent predictor of fracture risk and that a combination of QUS and BMD measurement could improve the predictive accuracy of fracture risk in elderly women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nguyen ND, Ahlborg HG, Center JR, Eisman JA, Nguyen TV (2007) Residual lifetime risk of fractures in women and men. J Bone Miner Res 22:781–788

    Article  PubMed  Google Scholar 

  2. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521

    Article  PubMed  CAS  Google Scholar 

  3. Center JR, Nguyen TV, Schneider DS, Sambrook P, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882

    Article  PubMed  CAS  Google Scholar 

  4. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733

    Article  PubMed  CAS  Google Scholar 

  5. Randell A, Sambrook P, Nguyen TV, Lapsley H, Jones G, Kelly PJ, Eisman JA (1995) Direct clinical and welfare costs of osteoporotic fractures in elderly men and women. Osteoporos Int 5:427–432

    Article  PubMed  CAS  Google Scholar 

  6. Faulkner KG (2005) The tale of the T-score: review and perspective. Osteoporos Int 16:347–352

    Article  PubMed  Google Scholar 

  7. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18:1947–1954

    Article  PubMed  Google Scholar 

  8. Legrand E, Chappard D, Pascaretti C, Duquenne M, Rondeau C, Simon Y, Rohmer V, Basle M-F, Audran M (1999) Bone mineral density and vertebral fractures in men. Osteoporos Int 10:265–270

    Article  PubMed  CAS  Google Scholar 

  9. Njeh CF, Hodgskkinson R, Currey JD, Langton CM (1996) Orthogonal relationship between ultrasound velocity and material properties of bovine cancelleous bone. Med Eng Phys 18:373–381

    Article  PubMed  CAS  Google Scholar 

  10. Gluer CC, Wu CY, Jergas M, Goldstgein SA, Genant HK (1994) Three quantitative parameters reflect bone structure. Calcif Tissue Int 55:46–52

    Article  PubMed  CAS  Google Scholar 

  11. Cortet B, Boutry N, Dubios P, Legroux-Gerot I, Cotton A, Marchandise X (2004) Does quantitative ultrasound of bone reflect more bone density than bone microarchitecture? Calcif Tissue Int 74:60–67

    Article  PubMed  CAS  Google Scholar 

  12. Langton CM, Palmer SB, Porter RW (1984) The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 13:89–91

    Article  PubMed  CAS  Google Scholar 

  13. Gnudi S, Gualtiori G, Malavolta N (1998) Simultaneous densitometry and quantitative bone sonography in the estimation of osteoprotic fracture risk. Br J Radiol 71:625–629

    PubMed  CAS  Google Scholar 

  14. Gluer CC, Eastell R, Reid DM, Felsenberg D, Roux C, Barkmann R, Timm W, Blenk T, Armbrecht G, Stewart A, Clowes J, Tyhomasius FE, Kotlta S (2004) Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS study. J Bone Miner Res 19:782–793

    Article  PubMed  Google Scholar 

  15. Nguyen TV, Center JR, Eisman JA (2004) Bone mineral density–independent association of quantitative ultrasound measurements and fracture risk in women. Osteoporos Int 15:942–947

    Article  PubMed  Google Scholar 

  16. Njeh C, Hans D, Fuerst T, Gluer CC, Genant HK (1999) Quantitative ultrasound: assessment of osteoporosis and bone status. Martin Dunitz, London

    Google Scholar 

  17. Bauer DC, Gluer CC, Genant HK, Stone K (1995) Quantitative ultrasound and vertebral fracture in postmenopausal women. J Bone Miner Res 10:353–357

    Article  PubMed  CAS  Google Scholar 

  18. Diez-Perez A, Gonzalez-Macias J, Marin F, Abizanda M, Alvarez R, Gimeno A, Pegenaute E, Vila J (2007) Prediction of absolute risk of non-spinal fractures using clinical risk factors and heel quantitative ultrasound. Osteoporos Int 18:629–639

    Article  PubMed  CAS  Google Scholar 

  19. Mautalen C, Vega E, Gonzalez D, Carrilero P, Otano A, Silberman F (1995) Ultrasound and dual X-ray absorptiometry densitometry in women with hip fracture. Calcif Tissue Int 57:165–168

    Article  PubMed  CAS  Google Scholar 

  20. Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, Gluer CC, Lu Y, Chavez M (1997) Comparison of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 12:697–711

    Article  PubMed  CAS  Google Scholar 

  21. Frost ML, Blake GM, Fogelman I (2000) Does quantitative ultrasound imaging enhance precision and discrimination? Osteoporos Int 11:425–433

    Article  PubMed  CAS  Google Scholar 

  22. Hollaender R, Hartl F, Krieg MA, Tyndall A, Geuckel C, Buitrago-Tellez C, Manghani M, Kraenzlin M, Theiler R, Hans D (2009) Prospective evaluation of risk of vertebral fractures using quantitative ultrasound measurements and bone mineral density in a population-based sample of postmenopausal women: results of the Basel Osteoporosis Study. Ann Rheum Dis 68:391–396

    Article  PubMed  CAS  Google Scholar 

  23. Khaw KT, Reeve J, Luben R, Bingham SA, Welch A, Wareham N, Oakes S, Day N (2004) Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 363:197–202

    Article  PubMed  Google Scholar 

  24. Moayyeri A, Kaptoge S, Dalzell N, Luben R, Wareham N, Bingham SA, Reeve J, Khaw KT (2009) The effect of including quantitative heel ultrasound in models for estimation of 10-year absolute risk of fracture. Bone 45:180–184

    Article  PubMed  Google Scholar 

  25. Frost ML, Blake GM, Fogelman I (2001) Does the combination of quantitative ultrasound and dual energy X-ray absorptiometry improve fracture discrimination? Osteoporos Int 12:471–477

    Article  PubMed  CAS  Google Scholar 

  26. Nguyen TV, Eisman JA, Kelly PJ, Sambrook P (1996) Risk factors for osteoporotic fractures in elderly men. Am J Epidemiol 144:255–263

    PubMed  CAS  Google Scholar 

  27. Simons LA, McCallum J, Simons J, Powell I, Ruys J, Heller R, Lerba C (1990) The Dubbo study: an Australian prospective community study of the health of elderly. Aust N Z J Med 20:783–789

    Article  PubMed  CAS  Google Scholar 

  28. Jones G, Nguyen TV, Sambrook P, Kelly PJ, Gilbert C, Eisman JA (1994) Symptomatic fracture incidence in elderly men and women: the Dubbo Osteoporosis Epidemiology Study (DOES). Osteoporos Int 4:277–282

    Article  PubMed  CAS  Google Scholar 

  29. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2007) Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int 18:1109–1117

    Article  PubMed  CAS  Google Scholar 

  30. Hanley JA, McNeil BJ (1982) The meaning and use of the area under the receiver operating characteristic (ROC) curve. Radiology 143:29–36

    PubMed  CAS  Google Scholar 

  31. Vexler A, Liu A, Eliseeva E, Schisterman EF (2008) Maximum likelihood ratio tests for comparing the discriminatory ability of biomarkers subject to limit of detection. Biometrics 64:895–903

    Article  PubMed  Google Scholar 

  32. Pencina M, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172

    Article  PubMed  Google Scholar 

  33. Siminoski K, Leslie WD, Frame H, Hodsman A, Josse RG, Khan A, Lentle BC, Levesque J, Lyons DJ, Tarulli G, Brown JP (2007) Recommendations for bone mineral density reporting in Canada: a shift to absolute fracture risk assessment. J Clin Densitom 10:120–123

    Article  PubMed  Google Scholar 

  34. R Development Core Team (2006) A language and environment for statistical computing, http://www.r-project.org/. R Foundation for Statistical Computing, Vienna

  35. Nguyen ND, Eisman JA, Center JR, Nguyen TV (2007) Risk factors for fracture in nonosteoporotic men and women. J Clin Endocrinol Metab 92:955–962

    Article  PubMed  CAS  Google Scholar 

  36. Pluijm SM, Graafmans WC, Bouter LM, Lips P (1999) Ultrasound measurements for the prediction of osteoporotic fractures in elderly people. Osteoporos Int 9:550–556

    Article  PubMed  CAS  Google Scholar 

  37. Hans D, Dargent-Molina P, Schott AM, Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514

    Article  PubMed  CAS  Google Scholar 

  38. Huopio J, Kroger H, Honkanen R, Jurvelin J, Saarelainen J, Alhava E (2004) Calcaneal ultrasound predicts early psotmenopausal fractures as well as axial BMD. A prospective study of 422 women. Osteoporos Int 15:190–195

    Article  PubMed  CAS  Google Scholar 

  39. Bauer DC, Ewing SK, Cauley JA, Ensrud KE, Cummings SR, Orwoll ES (2007) Quantitative ultrasound predicts hip and non-spine fracture in men: the MrOS study. Osteoporos Int 18:771–777

    Article  PubMed  CAS  Google Scholar 

  40. Cheng S, Njeh CF, Fan B, Cheng X, Hans D, Wang L, Fuerst T, Genant HK (2002) Influence of region of interest and bone size on calcaneal BMD: implications for the accuracy of quantitative ultrasound assessments at the calcaneus. Br J Radiol 75:59–68

    PubMed  CAS  Google Scholar 

  41. Toyras J, Kroger H, Jurvelin SJ (1999) Bone properties as estimated by mineral density, ultrasound attenuation, and velocity. Bone 25:725–731

    Article  PubMed  CAS  Google Scholar 

  42. Ruff CB, Hayes WC (1988) Sex differences in age-related remodeling of the femur and tibia. J Orthop Res 6:886–896

    Article  PubMed  CAS  Google Scholar 

  43. Trebacz H, Natali A (1999) Ultrasound velocity and attenuation in cancellous bone samples from lumbar vertebrae and calcaneus. Osteoporos Int 9:99–105

    Article  PubMed  CAS  Google Scholar 

  44. Bauer DC, Gluer CC, Cauley JA, Vogt TM, Ensrud K, Genant HK, Black DM (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women: a prospective study. Arch Intern Med 157:629–634

    Article  PubMed  CAS  Google Scholar 

  45. Kattan MW, Zelefsky MJ, Kupelian PA, Scardino PT, Fuks Z, Leibel SA (2000) Pretreatment nomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer. J Clin Oncol 18:3352–3359

    PubMed  CAS  Google Scholar 

  46. Fernando J, Bianco J (2006) Nomograms and medicine. Eur Urol 50:884–886

    Article  Google Scholar 

  47. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey EV (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397

    Article  PubMed  CAS  Google Scholar 

  48. Sandhu SK, Nguyen ND, Center JR, Pocock NA, Eisman JA, Nguyen TV (2009) Prognosis of fracture: evaluation of predictive accuracy of the FRAX algorithm and Garvan nomogram. Osteoporos Int 21:863–871

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the assistance of Sr. Janet Watters, Donna Reeves, Shaye Field, and Jodie Ratleg for the interview, data collection, and measurement of BMD. We thank Mr. J. McBride and the IT group of the Garvan Institute of Medical Research for the management of the database. The study was partly supported by the Australian National Health and Medical Research Council (NHMRC). N. D. N. is supported by a fellowship from the AMBeR (Australian Medical Bioinformatics Resource). T. V. N. is supported by a senior research fellowship from the Australian NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan V. Nguyen.

Additional information

J.A. Eisman has served as consultant/advisory role to Amgen, deCode, Eli Lilly, Merck Sharp & Dohme, Novartis, Sanofi-Aventis, and Servier. J. R. Center has served as consultant/advisory role to Amgen, Merck Sharp & Dohme, Novartis, and Sanofi-Aventis. T.V. Nguyen has served as consultant/advisory role to Merck Sharp & Dohme, Novartis, Roche, and Servier. All other authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, M.Y., Nguyen, N.D., Center, J.R. et al. Absolute Fracture-Risk Prediction by a Combination of Calcaneal Quantitative Ultrasound and Bone Mineral Density. Calcif Tissue Int 90, 128–136 (2012). https://doi.org/10.1007/s00223-011-9556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9556-3

Keywords

Navigation