Skip to main content
Log in

Bone Microarchitecture and Estimated Strength in 499 Adult Danish Women and Men: A Cross-Sectional, Population-Based High-Resolution Peripheral Quantitative Computed Tomographic Study on Peak Bone Structure

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

High-resolution peripheral quantitative computed tomography (HR-pQCT) allows in vivo assessment of cortical and trabecular bone mineral density (BMD), geometry, and microarchitecture at the distal radius and tibia in unprecedented detail. In this cross-sectional study, we provide normative and descriptive HR-pQCT data from a large population-based sample of Danish Caucasian women and men (n = 499) aged 20–80 years. In young adults (<35 years), women (n = 100) compared to men (n = 64) had smaller total and cortical areas, inferior metric trabecular indices, higher network inhomogeneity, lower cortical porosity, and lower finite element estimated bone strength. The changes in parameters with age were estimated from multiple regression analyses. In men, with age the greatest changes (from parameter minimum or maximum) until 80 years were found for cortical porosity (1.91 IQR), BV/TV (−1.09 IQR), and trabecular thickness (−0.87 IQR) in the radius and BV/TV (−1.55 IQR), cortical BMD (−1.25 IQR), and cortical porosity (1.25 IQR) in the tibia. In women changes were most pronounced for cortical porosity (4.76 IQR), trabecular inhomogeneity (3.84 IQR), and cortical BMD (−2.86 IQR) in the radius and cortical BMD (−5.06 IQR), cortical porosity (3.86 IQR), and cortical area (−1.64 IQR) in the tibia. These findings emphasize the age- and sex-related differences in bone morphology, with men having a structural advantage over women from early adult life translating into superior indices of bone strength. With age women are further disadvantaged compared to men by greater decrements in cortical and trabecular architecture in the radius and cortical architecture in the tibia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  CAS  PubMed  Google Scholar 

  2. Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B (2001) Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 12:989–995

    Article  CAS  PubMed  Google Scholar 

  3. Seeman E, Delmas PD (2006) Bone quality: the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  CAS  PubMed  Google Scholar 

  4. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Article  CAS  PubMed  Google Scholar 

  5. Pistoia W, Van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F, Ruegsegger P (2004) Image-based micro-finite-element modeling for improved distal radius strength diagnosis: moving from bench to bedside. J Clin Densitom 7:153–160

    Article  CAS  PubMed  Google Scholar 

  6. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22:425–433

    Article  PubMed  Google Scholar 

  7. Vilayphiou N, Boutroy S, Sornay-Rendu E, Van Rietbergen B, Munoz F, Delmas PD, Chapurlat R (2010) Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in postmenopausal women. Bone 46:1030–1037

    Article  PubMed  Google Scholar 

  8. Vilayphiou N, Boutroy S, Szulc P, Van Rietbergen B, Munoz F, Delmas PD, Chapurlat R (2011) Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res 26:965–973

    Article  PubMed  Google Scholar 

  9. Chaitou A, Boutroy S, Vilayphiou N, Munoz F, Delmas PD, Chapurlat R, Szulc P (2010) Association between bone turnover rate and bone microarchitecture in men: the STRAMBO study. J Bone Miner Res 25:2313–2323

    Article  PubMed  Google Scholar 

  10. Chaitou A, Boutroy S, Vilayphiou N, Varennes A, Richard M, Blaizot S, Munoz F, Delmas PD, Goudable J, Chapurlat R, Szulc P (2011) Association of bone microarchitecture with parathyroid hormone concentration and calcium intake in men—the STRAMBO study. Eur J Endocrinol 165:151–159

    Article  CAS  PubMed  Google Scholar 

  11. Khosla S, Melton LJ III, Achenbach SJ, Oberg AL, Riggs BL (2006) Hormonal and biochemical determinants of trabecular microstructure at the ultradistal radius in women and men. J Clin Endocrinol Metab 91:885–891

    Article  CAS  PubMed  Google Scholar 

  12. Kazakia GJ, Nirody JA, Bernstein G, Sode M, Burghardt AJ, Majumdar S (2013) Age- and gender-related differences in cortical geometry and microstructure: improved sensitivity by regional analysis. Bone 52:623–631

    Article  PubMed Central  PubMed  Google Scholar 

  13. Sode M, Burghardt AJ, Kazakia GJ, Link TM, Majumdar S (2010) Regional variations of gender-specific and age-related differences in trabecular bone structure of the distal radius and tibia. Bone 46:1652–1660

    Article  PubMed Central  PubMed  Google Scholar 

  14. Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25:983–993

    Article  PubMed  Google Scholar 

  15. Dalzell N, Kaptoge S, Morris N, Berthier A, Koller B, Braak L, Van Rietbergen B, Reeve J (2009) Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos Int 20:1683–1694

    Article  CAS  PubMed  Google Scholar 

  16. Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M, Peterson JM, Melton LJ 3rd (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 21:124–131

    Article  PubMed Central  PubMed  Google Scholar 

  17. Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK (2011) Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res 26:50–62

    Article  PubMed  Google Scholar 

  18. Kaptoge S, da Silva JA, Brixen K, Reid DM, Kroger H, Nielsen TL, Andersen M, Hagen C, Lorenc R, Boonen S, De Vernejoul MC, Stepan JJ, Adams J, Kaufman JM, Reeve J (2008) Geographical variation in DXA bone mineral density in young European men and women: results from the Network in Europe on Male Osteoporosis (NEMO) study. Bone 43:332–339

    Article  PubMed  Google Scholar 

  19. Hansen S, Hauge EM, Rasmussen L, Jensen JE, Brixen K (2012) Parathyroidectomy improves bone geometry and microarchitecture in female patients with primary hyperparathyroidism: a one-year prospective controlled study using high-resolution peripheral quantitative computed tomography. J Bone Miner Res 27:1150–1158

    Article  PubMed  Google Scholar 

  20. Hanson J (1997) Standardization of femur BMD. J Bone Miner Res 12:1316–1317

    Article  CAS  PubMed  Google Scholar 

  21. Pauchard Y, Liphardt AM, Macdonald HM, Hanley DA, Boyd SK (2012) Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography. Bone 50:1304–1310

    Article  PubMed  Google Scholar 

  22. Ruegsegger P, Kalender W (1993) A phantom for standardization and quality control in peripheral bone measurements by pQCT and DXA. Phys Med Biol 38:1963–1970

    Article  Google Scholar 

  23. Laib A, Ruegsegger P (1999) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone 24:35–39

    Article  CAS  PubMed  Google Scholar 

  24. Laib A, Hildebrand T, Hauselmann HJ, Ruegsegger P (1997) Ridge number density: a new parameter for in vivo bone structure analysis. Bone 21:541–546

    Article  CAS  PubMed  Google Scholar 

  25. MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29:1096–1105

    Article  PubMed  Google Scholar 

  26. Laib A, Hauselmann HJ, Ruegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6:329–337

    CAS  PubMed  Google Scholar 

  27. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis: implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Laib A, Newitt DC, Lu Y, Majumdar S (2002) New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int 13:130–136

    Article  CAS  PubMed  Google Scholar 

  29. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK (2010) Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res 25:882–890

    PubMed  Google Scholar 

  30. Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47:519–528

    Article  PubMed Central  PubMed  Google Scholar 

  31. Chiu J, Robinovitch SN (1998) Prediction of upper extremity impact forces during falls on the outstretched hand. J Biomech 31:1169–1176

    Article  CAS  PubMed  Google Scholar 

  32. Melton LJ 3rd, Riggs BL, van Lenthe GH, Achenbach SJ, Muller R, Bouxsein ML, Amin S, Atkinson EJ, Khosla S (2007) Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res 22:1442–1448

    Article  PubMed  Google Scholar 

  33. Aaron JE, Makins NB, Sagreiya K (1987) The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop Relat Res 215:260–271

    PubMed  Google Scholar 

  34. Han ZH, Palnitkar S, Rao DS, Nelson D, Parfitt AM (1996) Effect of ethnicity and age or menopause on the structure and geometry of iliac bone. J Bone Miner Res 11:1967–1975

    Article  CAS  PubMed  Google Scholar 

  35. Silva MJ, Gibson LJ (1997) Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone 21:191–199

    Article  CAS  PubMed  Google Scholar 

  36. Lauretani F, Bandinelli S, Griswold ME, Maggio M, Semba R, Guralnik JM, Ferrucci L (2008) Longitudinal changes in BMD and bone geometry in a population-based study. J Bone Miner Res 23:400–408

    Article  PubMed  Google Scholar 

  37. Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res 21:1856–1863

    Article  PubMed  Google Scholar 

  38. Cooper C, Melton LJ III (1992) Epidemiology of osteoporosis. Trends Endocrinol Metab 3:224–229

    Article  CAS  PubMed  Google Scholar 

  39. Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Oberg AL, Rouleau PA, McCollough CH, Khosla S, Bouxsein ML (2006) Population-based analysis of the relationship of whole bone strength indices and fall-related loads to age- and sex-specific patterns of hip and wrist fractures. J Bone Miner Res 21:315–323

    Article  PubMed  Google Scholar 

  40. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23:205–214

    Article  PubMed  Google Scholar 

  41. Liu XS, Walker MD, McMahon DJ, Udesky J, Liu G, Bilezikian JP, Guo XE (2011) Better skeletal microstructure confers greater mechanical advantages in Chinese-American women versus white women. J Bone Miner Res 26:1783–1792

    Article  PubMed Central  PubMed  Google Scholar 

  42. Putman MS, Yu EW, Lee H, Neer RM, Schindler E, Taylor AP, Cheston E, Bouxsein ML, Finkelstein JS (2013) Differences in skeletal microarchitecture and strength in African-American and Caucasian women. J Bone Miner Res 28:2177–2185

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Elizabeth Hanmann for study coordination and the technicians at the Osteoporosis Clinic, Odense University Hospital, for performing DXA and HR-pQCT scans. This study received funding from the Region of Southern Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stinus Hansen.

Additional information

K. Brixen has received research support from Merck Sharpe & Dohme, Amgen Inc., Novartis and NPS Pharmaceuticals, served as a consultant for Merck Sharpe & Dohme and speaker for Servier, Amgen Inc., GlaxoSmithKline and Novartis. S. Hansen has received grants from The Region of Southern Denmark. V. Shanbhogue, L. Folkestad and M. M. F. Nielsen state that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, S., Shanbhogue, V., Folkestad, L. et al. Bone Microarchitecture and Estimated Strength in 499 Adult Danish Women and Men: A Cross-Sectional, Population-Based High-Resolution Peripheral Quantitative Computed Tomographic Study on Peak Bone Structure. Calcif Tissue Int 94, 269–281 (2014). https://doi.org/10.1007/s00223-013-9808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9808-5

Keywords

Navigation