Skip to main content

Advertisement

Log in

Nitric Oxide is Involved in the Down-regulation of SOST Expression Induced by Mechanical Loading

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Mechanical stimulation reduces sclerostin expression in rodents. However, few data are available about the effect of physical stimuli in human systems. Recently we observed that the demethylating agent AzadC induces SOST expression in bone cells. This allowed us in this study to explore the effect of mechanical loading on SOST expression by subjecting AzadC-treated human bone cells to pulsating fluid flow (PFF). PFF significantly decreased the AzadC-induced expression of SOST. This effect persisted for at least 24 h, and in fact SOST expression was lower at 24 h after PFF treatment than at 1 h after PFF treatment (PFF/static ratio 0.47 ± 0.04 vs. 0.63 ± 0.03 respectively, p = 0.03). The PFF-induced decrease in SOST expression was not due to a change in the methylation profile of the SOST promoter. However, PFF stimulated nitric oxide (NO) synthesis, which appeared essential for the PFF effect on SOST expression. In fact, the NO synthase inhibitor 1400 W prevented the effect of PFF on SOST expression. Moreover, the NO-donor SNAP decreased SOST mRNA in bone organ cultures. The conditioned medium (CM) of cells subjected to PFF induced a 38 ± 4 % decrease in SOST expression (p = 0.03) in static cultures and diminished the transcriptional activity of reporter vectors with the cloned SOST promoter (Static-CM: 1.47 ± 0.10 vs. PFF-CM: 0.78 ± 0.09, p = 0.02). This is consistent with a PFF-induced secretion of factors that modulate SOST. Our results suggest that NO and other soluble factors are involved in the inhibition of SOST expression by PFF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Suva LJ, Gaddy D, Perrien DS, Thomas RL, Findlay DM (2005) Regulation of bone mass by mechanical loading: microarchitecture and genetics. Curr Osteoporos Rep 3:46–51

    Article  PubMed  Google Scholar 

  2. Mullender M, El Haj AJ, Yang Y, van Duin MA, Burger EH, Klein-Nulend J (2004) Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 42:14–21

    Article  CAS  PubMed  Google Scholar 

  3. Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone 54:182–190

    Article  CAS  PubMed  Google Scholar 

  4. Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, Rubin CT (2010) Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol 6:50–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875

    Article  CAS  PubMed  Google Scholar 

  6. Galli C, Passeri G, Macaluso GM (2010) Osteocytes and WNT: the mechanical control of bone formation. J Dent Res 89:331–343

    Article  CAS  PubMed  Google Scholar 

  7. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S, Ikeda K (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5:464–475

    Article  CAS  PubMed  Google Scholar 

  8. Tu X, Rhee Y, Condon KW, Bivi N, Allen MR, Dwyer D, Stolina M, Turner CH, Robling AG, Plotkin LI, Bellido T (2012) Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 50:209–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Semenov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280:26770–26775

    Article  CAS  PubMed  Google Scholar 

  10. Sutherland MK, Geoghegan JC, Yu C, Turcott E, Skonier JE, Winkler DG, Latham JA (2004) Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone 35:828–835

    Article  CAS  PubMed  Google Scholar 

  11. Atkins GJ, Rowe PS, Lim HP, Welldon KJ, Ormsby R, Wijenayaka AR, Zelenchuk L, Evdokiou A, Findlay DM (2011) Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J Bone Miner Res 26:1425–1436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Papanicolaou SE, Phipps RJ, Fyhrie DP, Genetos DC (2009) Modulation of sclerostin expression by mechanical loading and bone morphogenetic proteins in osteogenic cells. Biorheology 46:389–399

    CAS  PubMed  Google Scholar 

  13. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 24:1651–1661

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869

    Article  PubMed  Google Scholar 

  15. Delgado-Calle J, Sanudo C, Bolado A, Fernandez AF, Arozamena J, Pascual-Carra MA, Rodriguez-Rey JC, Fraga MF, Bonewald L, Riancho JA (2012) DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. J Bone Miner Res 27:926–937

    Article  CAS  PubMed  Google Scholar 

  16. Bacabac RG, Smit TH, Cowin SC, Van Loon JJ, Nieuwstadt FT, Heethaar R, Klein-Nulend J (2005) Dynamic shear stress in parallel-plate flow chambers. J Biomech 38:159–167

    Article  PubMed  Google Scholar 

  17. Bacabac RG, Smit TH, Heethaar RM, Van Loon JJ, Pourquie MJ, Nieuwstadt FT, Klein-Nulend J (2002) Characteristics of the parallel-plate flow chamber for mechanical stimulation of bone cells under microgravity. J Gravit Physiol 9:181–182

    Google Scholar 

  18. Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading–induced bone fluid shear stresses. J Biomech 27:339–360

    Article  CAS  PubMed  Google Scholar 

  19. Delgado-Calle J, Arozamena J, Garcia-Renedo R, Garcia-Ibarbia C, Pascual-Carra MA, Gonzalez-Macias J, Riancho JA (2011) Osteocyte deficiency in hip fractures. Calcif Tissue Int 89:327–334

    Article  CAS  PubMed  Google Scholar 

  20. Juffer P, Jaspers RT, Lips P, Bakker AD, Klein-Nulend J (2012) Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am J Physiol Endocrinol Metab 302:E389–E395

    Article  CAS  PubMed  Google Scholar 

  21. Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJ, Knowles RG (1997) 1400 W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem 272:4959–4963

    Article  CAS  PubMed  Google Scholar 

  22. Delgado-Calle J, Sanudo C, Fernandez AF, Garcia-Renedo R, Fraga MF, Riancho JA (2012) Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics 7:83–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  24. Delgado-Calle J, Sanudo C, Sanchez-Verde L, Garcia-Renedo RJ, Arozamena J, Riancho JA (2011) Epigenetic regulation of alkaline phosphatase in human cells of the osteoblastic lineage. Bone 49:830–838

    Article  CAS  PubMed  Google Scholar 

  25. Sugiyama T, Price JS, Lanyon LE (2010) Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone 46:314–321

    Article  PubMed Central  PubMed  Google Scholar 

  26. Skerry TM (2008) The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 473:117–123

    Article  CAS  PubMed  Google Scholar 

  27. Rochefort GY, Pallu S, Benhamou CL (2010) Osteocyte: the unrecognized side of bone tissue. Osteoporos Int 21:1457–1469

    Article  CAS  PubMed  Google Scholar 

  28. Price JS, Sugiyama T, Galea GL, Meakin LB, Sunters A, Lanyon LE (2011) Role of endocrine and paracrine factors in the adaptation of bone to mechanical loading. Curr Osteoporos Rep 9:76–82

    Article  PubMed  Google Scholar 

  29. Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, Pulvirenti I, Hawa G, Tringali G, Fiore CE (2010) Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 95:2248–2253

    Article  CAS  PubMed  Google Scholar 

  30. Morse LR, Sudhakar S, Danilack V, Tun C, Lazzari A, Gagnon DR, Garshick E, Battaglino RA (2012) Association between sclerostin and bone density in chronic SCI. J Bone Miner Res 27:352–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kobayashi K, Kambe F, Kurokouchi K, Sakai T, Ishiguro N, Iwata H, Koga K, Gruener R, Seo H (2000) TNF-alpha-dependent activation of NF-kappa B in human osteoblastic HOS-TE85 cells is repressed in vector-averaged gravity using clinostat rotation. Biochem Biophys Res Commun 279:258–264

    Article  CAS  PubMed  Google Scholar 

  32. Klein-Nulend J, Semeins CM, Ajubi NE, Nijweide PJ, Burger EH (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation. Biochem Biophys Res Commun 217:640–648

    Article  CAS  PubMed  Google Scholar 

  33. Mullender MG, Dijcks SJ, Bacabac RG, Semeins CM, Van Loon JJ, Klein-Nulend J (2006) Release of nitric oxide, but not prostaglandin E2, by bone cells depends on fluid flow frequency. J Orthop Res 24:1170–1177

    Article  CAS  PubMed  Google Scholar 

  34. Bakker AD, Huesa C, Hughes A, Aspden RM, van’t Hof RJ, Klein-Nulend J, Helfrich MH (2013) Endothelial nitric oxide synthase is not essential for nitric oxide production by osteoblasts subjected to fluid shear stress in vitro. Calcif Tissue Int 92:228–239

    Article  CAS  PubMed  Google Scholar 

  35. Harvey NC, Lillycrop KA, Garratt E, Sheppard A, McLean C, Burdge G, Slater-Jefferies J, Rodford J, Crozier S, Inskip H, Emerald BS, Gale CR, Hanson M, Gluckman P, Godfrey K, Cooper C (2012) Evaluation of methylation status of the eNOS promoter at birth in relation to childhood bone mineral content. Calcif Tissue Int 90:120–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Delgado-Calle J, Arozamena J, Perez-Lopez J, Bolado-Carrancio A, Sanudo C, Agudo G, de l Vega R, Alonso MA, Rodriguez-Rey JC, Riancho JA (2013) Role of BMPs in the regulation of sclerostin as revealed by an epigenetic modifier of human bone cells. Mol Cell Endocrinol 369:27–34

    Article  CAS  PubMed  Google Scholar 

  37. Arnsdorf EJ, Tummala P, Castillo AB, Zhang F, Jacobs CR (2010) The epigenetic mechanism of mechanically induced osteogenic differentiation. J Biomech 43:2881–2886

    Article  PubMed Central  PubMed  Google Scholar 

  38. Riancho JA, Salas E, Zarrabeitia MT, Olmos JM, Amado JA, Fernandez-Luna JL, Gonzalez-Macias J (1995) Expression and functional role of nitric oxide synthase in osteoblast-like cells. J Bone Miner Res 10:439–446

    Article  CAS  PubMed  Google Scholar 

  39. Riancho JA, Zarrabeitia MT, Fernandez-Luna JL, Gonzalez-Macias J (1995) Mechanisms controlling nitric oxide synthesis in osteoblasts. Mol Cell Endocrinol 107:87–92

    Article  CAS  PubMed  Google Scholar 

  40. Fox SW, Chambers TJ, Chow JW (1996) Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am J Physiol 270:E955–E960

    CAS  PubMed  Google Scholar 

  41. van’t Hof RJ, Ralston SH (2001) Nitric oxide and bone. Immunology 103:255–261

    Article  PubMed Central  PubMed  Google Scholar 

  42. Galea GL, Sunters A, Meakin LB, Zaman G, Sugiyama T, Lanyon LE, Price JS (2011) Sost down-regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4. FEBS Lett 585:2450–2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Cohen-Kfir E, Artsi H, Levin A, Abramowitz E, Bajayo A, Gurt I, Zhong L, D’Urso A, Toiber D, Mostoslavsky R, Dresner-Pollak R (2011) Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin: a bone formation inhibitor. Endocrinology 152:4514–4524

    Article  CAS  PubMed  Google Scholar 

  44. Leupin O, Kramer I, Collette NM, Loots GG, Natt F, Kneissel M, Keller H (2007) Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J Bone Miner Res 22:1957–1967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Vatsa A, Smit TH, Klein-Nulend J (2007) Extracellular NO signalling from a mechanically stimulated osteocyte. J Biomech 40(1):S89–S95

    Article  PubMed  Google Scholar 

  46. Vincent C, Findlay DM, Welldon KJ, Wijenayaka AR, Zheng TS, Haynes DR, Fazzalari NL, Evdokiou A, Atkins GJ (2009) Pro-inflammatory cytokines TNF-related weak inducer of apoptosis (TWEAK) and TNFalpha induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts. J Bone Miner Res 24:1434–1449

    Article  CAS  PubMed  Google Scholar 

  47. Santos A, Bakker AD, Willems HM, Bravenboer N, Bronckers AL, Klein-Nulend J (2011) Mechanical loading stimulates BMP7, but not BMP2, production by osteocytes. Calcif Tissue Int 89:318–326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Cor Semeins and Jolanda Hogervorst (Department of Oral Cell Biology, ACTA, Amsterdam, The Netherlands) and Carolina Sañudo (Department of Internal Medicine, H. U. Marqués de Valdecilla, IFIMAV, University of Cantabria, Spain) for their expert technical assistance This work was supported in part by grants from Instituto de Salud Carlos III–Fondo de Investigaciones Sanitarias (Spanish Ministry of Health) PI12/615 and SEIOMM-FEIOMM 2011. J.D.-C. was recipient of a fellowship from IFIMAV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Riancho.

Additional information

All authors have read and approve this version of the article, and due care has been taken to ensure the integrity of the work. No part of this paper has published or submitted elsewhere. No conflict of interest exits in the submission of this manuscript.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado-Calle, J., Riancho, J.A. & Klein-Nulend, J. Nitric Oxide is Involved in the Down-regulation of SOST Expression Induced by Mechanical Loading. Calcif Tissue Int 94, 414–422 (2014). https://doi.org/10.1007/s00223-013-9821-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9821-8

Keywords

Navigation