Skip to main content

Advertisement

Log in

Association of the TYMS 3G/3G genotype with poor response and GGH 354GG genotype with the bone marrow toxicity of the methotrexate in RA patients

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Gamma-glutamyl hydrolase (GGH), cyclin D1 (CCND1) and thymidylate synthase (TS) genes encode enzymes that are involved in methotrexate (MTX) action. In a group of 184 RA patients treated with MTX, we have investigated whether selected polymorphisms in these genes modulate MTX efficacy and/or have impact on adverse drug effects (ADEs).

Methods

The efficacy of the MTX therapy has been estimated using the disease activity score in 28 joints (DAS28-ESR) based on EULAR criteria and relative DAS28 values (rDAS28). All adverse drug events were recorded. Patients were genotyped for selected polymorphisms of the GGH (-354 G > T and 452 C > T), CCND1 (870 A > G) and TYMS (variable number of tandem repeats, VNTR, and G to C substitution of triple repeat, 3R allele) gene. Association studies have been performed between obtained genotypes and the efficacy and toxicity of MTX.

Results

According to the EULAR response criteria, 146 RA patients (79.3 %) were classified as responders (good/moderate response) and 38 (20.7 %) as non-responders (poor response). Higher frequency of the TYMS 3 G/3 G genotype has been found among non-responders as compared to individuals with remaining genotypes (p = 0.02). ADEs were recorded in 53 patients. Among those patients eight experienced bone marrow toxicity, all of them carried GGH -354GG genotype (p = 0.003). No other significant association were observed.

Conclusion

The 3 G/3 G genotype of the TYMS gene may indicate predisposition of poor response to MTX and GG genotype of GGH -354 T > G polymorphism may have high predictive value for myelosuppression in RA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Combe B, Landewe R, Lukas C et al (2007) EULAR recommendations for the management of early arthritis: report of a task force of the European Standing Committee for International Clinical Studies Including Therapeutics (ESCIT). Ann Rheum Dis 66:34–45

    Article  PubMed  CAS  Google Scholar 

  2. Saag KG, Teng GG, Patkar NM et al (2008) American College of Rheumatology 2008 recommendations for the use of non biologic and biologic disease-modifying antirheumatic drugs in rheumatoid arthritis. Arthritis Rheum 59:762–784

    Article  PubMed  CAS  Google Scholar 

  3. Bohanec Grabar P, Logar D, Lestan B, Dolzan V (2008) Genetic determinants of methotrexate toxicity in rheumatoid arthritis patients: a study of polymorphisms affecting methotrexate transport and folate metabolism. Eur J Clin Pharmacol 64:1057–1068

    Article  PubMed  CAS  Google Scholar 

  4. Drozdzik M, Rudas T, Pawlik A, Kurzawski M, Czerny B, Gornik W, Herczynska M (2006) The effect of 3435 C > T MDR1 gene polymorphism on rheumatoid arthritis treatment with disease-modifying antirheumatic drugs. Eur J Clin Pharmacol 62:933–937

    Article  PubMed  CAS  Google Scholar 

  5. Bologna C, Viu P, Jorgensen C, Sany J (1996) Effect age on the efficacy and tolerance of methotrexate in rheumatoid arthritis. Br J Rheumatol 35:453–457

    Article  PubMed  CAS  Google Scholar 

  6. Anderson JJ, Wells G, Verhoeven AC, Felson DT (2000) Factors predicting response in treatment in rheumatoid arthritis: the importance of disease duration. Arthritis Rheum 43:22–29

    Article  PubMed  CAS  Google Scholar 

  7. Hoekstra M, van Ede AE, Haagsma CJ et al (2003) Factors associated with toxicity, final dose, and efficacy of methotrexate in patients with rheumatoid arthritis. Ann Rheum Dis 63:423–436

    Article  Google Scholar 

  8. Yao R, Schneider E, Ryan TJ, Galivan J (1996) Human gamma-glutamyl hydrolase: cloning and characterization of the enzyme expressed in vitro. Proc Nat Acad Sci 93:10134–10138

    Article  PubMed  CAS  Google Scholar 

  9. Chave KJ, Ryan TJ, Chmura SE, Galivan J (2003) Identification of single nucleotide polymorphisms in the human gamma-glutamyl hydrolase gene and characterization of promoter polymorphisms. Gene 13:167–175

    Article  Google Scholar 

  10. Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79:551–555

    Article  PubMed  CAS  Google Scholar 

  11. Lamb J, Ramaswamy S, Ford HL et al (2003) A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114:323–334

    Article  PubMed  CAS  Google Scholar 

  12. Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD, Heighway J (1995) Alternate splicing produces a novel cyclin D1 transcript. Oncogene 11:1005–1011

    PubMed  CAS  Google Scholar 

  13. Hochhauser D, Schnieders B, Ercikan-Abali E et al (1996) Effect of cyclin D1 overexpression on drug sensitivity in a human fibrosarcoma cell line. J Natl Canc Inst 88:1269–1275

    Article  CAS  Google Scholar 

  14. Zhang LQ, Wang J, Shang JQ et al (2011) Cyclin D1 G870A polymorphism and colorectal cancer susceptibility: a meta-analysis of 20 populations. Int J Colorectal Dis 26:1249–1255

    Article  PubMed  Google Scholar 

  15. Lu C, Dong J, Ma H et al (2009) CCND1 G870A polymorphism contributes to breast cancer susceptibility: a meta-analysis. Breast Canc Res Treat 116:571–575

    Article  CAS  Google Scholar 

  16. Warchoł T, Kruszyna L, Lianeri M, Roszak A, Jagodzinski PP (2011) Distribution of CCND1 A870G polymorphism in patients with advanced uterine cervical carcinoma. Pathol Oncol Res 17:133–137

    Article  PubMed  Google Scholar 

  17. Banerjee D, Mayer-Kuckuk P, Capiaux G, Budak-Alpdogan T, Gorlick R, Bertino JR (2002) Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase. Biochim Biophys Acta 1587:164–173

    Article  PubMed  CAS  Google Scholar 

  18. Horie N, Aiba H, Oguro K, Hojo H, Takeishi K (1995) Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5'-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct 20:191–197

    Article  PubMed  CAS  Google Scholar 

  19. Kawakami K, Watanabe G (2003) Identification and functional analysis of single nucleotide polymorphism in the tandem repeat sequence of thymidylate synthase gene. Cancer Res 63(18):6004–6007

    PubMed  CAS  Google Scholar 

  20. Arnett FC, Edworthy SM, Bloch DA (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  PubMed  CAS  Google Scholar 

  21. Prevoo ML, van't Hof MA, Kuper HH, van Leeuwen MA, van de Putte LD, van Riel PL (1995) Modified disease-activity scores that include 28-joint counts. development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38:44–48

    Article  PubMed  CAS  Google Scholar 

  22. Fransen J, van Riel PL (2005) The disease activity score and the EULAR response criteria. Clin Exp Rheumatol 5:S 93–S 99

    Google Scholar 

  23. Suarez-Gestal M, Perez-Pampin E, Calaza M, Gomez-Reino JJ, Gonzalez A (2010) Lack of replication of genetic predictors for the rheumatoid arthritis response to anti-TNF treatments: a prospective case-only stud. Arthritis Res Ther 12:72

    Article  Google Scholar 

  24. Storey JD, Taylor JE, Siegmund D (2004) Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: a unified approach. J Roy Stat Soc B 66:187–205

    Article  Google Scholar 

  25. Gauderman WJ, Morrison JM (2006) QUANTO 11 A computer program for power and sample size calculations for genetic-epidemiology studies, http://hydra.usc.edu/gxe

  26. http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=9344

  27. http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=719235

  28. http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=11545078

  29. http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=2853542

  30. Marsh S, Collie-Duguid ES, Li T, Lui X, McLeod HL (1999) Ethnic variation in the thymidylate synthase enhancer region polymorphism among Caucasian and Asian populations. Genomics 58:310–312

    Article  PubMed  CAS  Google Scholar 

  31. Genestier L, Paillot R, Quemeneur L, Izeradjene K, Revillard JP (2000) Mechanisms of action of methotrexate. Immunopharmacology 47:247–257

    Article  PubMed  CAS  Google Scholar 

  32. Chabner BA, Allegra CJ, Curt GA et al (1985) Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Invest 76:907–912

    Article  PubMed  CAS  Google Scholar 

  33. Cheng Q, Wu B, Kager L et al (2004) A substrate specific functional polymorphism of human gamma-glutamyl hydrolase alters catalytic activity and methotrexate polyglutamate accumulation in acute lymphoblastic leukaemia cells. Pharmacogenetics 14:557–567

    Article  PubMed  CAS  Google Scholar 

  34. Yanagimachi M, Naruto T, Hara T et al (2011) Influence of polymorphisms within the methotrexate pathway genes on the toxicity and efficacy of methotrexate in patients with juvenile idiopathic arthritis. Br J Clin Pharmacol 71:237–243. doi:10.1111/j.1365-2125.2010.03814.x

    Article  PubMed  CAS  Google Scholar 

  35. van der Straaten RJ, Wessels JA, de Vries-Bouwstra JK et al (2007) Exploratory analysis of four polymorphisms in human GGH and FPGS genes and their effect in methotrexate-treated rheumatoid arthritis patients. Pharmacogenomics 8:141–150

    Article  PubMed  Google Scholar 

  36. Sharma S, Das M, Kumar A et al (2008) Interaction of genes from influx-metabolism-efflux pathway and their influence on methotrexate efficacy in rheumatoid arthritis patients among Indians. Pharmacogenetics Genom 18:1041–1049

    Article  CAS  Google Scholar 

  37. Kato T, Hamada A, Mori S, Saito H (2011) Genetic polymorphisms in metabolic and cellular transport pathway of methotrexate impact clinical outcome of methotrexate monotherapy in Japanese patients with rheumatoid arthritis. Drug Metab Pharmacokinet. [Epub ahead of print] doi:10.2133/dmpk.DMPK-11-RG-066

  38. Hayashi H, Fujimaki C, Daimon T, Tsuboi S, Matsuyama T, Itoh K (2009) Genetic polymorphisms in folate pathway enzymes as a possible marker for predicting the outcome of methotrexate therapy in Japanese patients with rheumatoid arthritis. J Clin Pharm Ther 34:355–361

    Article  PubMed  CAS  Google Scholar 

  39. Dervieux T, Kremer J, Lein DO et al. (2004) Contribution of common polymorphisms in reduced folate carrier and gamma-glutamylhydrolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis. Pharmacogenetics 14:733–739

    Article  PubMed  CAS  Google Scholar 

  40. Costea I, Moghrabi A, Krajinovic M (2003) The influence of cyclin D1 (CCND1) 870A > G polymorphism and CCND1-thymidylate synthase (TS) gene-gene interaction on the outcome of childhood acute lymphoblastic leukaemia. Pharmacogenetics 13:577–580

    Article  PubMed  CAS  Google Scholar 

  41. Costea I, Moghrabi A, Laverdiere C, Graziani A, Krajinovic M (2006) Folate cycle gene variants and chemotherapy toxicity in pediatric patients with acute lymphoblastic leukemia. Haematologica 91:1113–1116

    PubMed  CAS  Google Scholar 

  42. Kumagai K, Hiyama K, Oyama T, Maeda H, Kohno N (2003) Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int J Mol Med 11:593–600

    PubMed  CAS  Google Scholar 

  43. Dervieux T, Furst D, Lein DO et al. (2004) Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum 50:2766–2774

    Article  PubMed  CAS  Google Scholar 

  44. Ghodke Y, Chopra A, Joshi K, Patwardhan B (2008) Are Thymidylate synthase and Methylene tetrahydrofolate reductase genes linked with methotrexate response (efficacy, toxicity) in Indian (Asian) rheumatoid arthritis patients? Clin Rheumatol 27:787–789

    Article  PubMed  Google Scholar 

  45. Ranganathan P, Culverhouse R, Marsh S et al. (2008) Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis. J Rheumatol 35:572–579

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Serbian Ministry of Education and Science [grant 175091].

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Jekic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jekic, B., Lukovic, L., Bunjevacki, V. et al. Association of the TYMS 3G/3G genotype with poor response and GGH 354GG genotype with the bone marrow toxicity of the methotrexate in RA patients. Eur J Clin Pharmacol 69, 377–383 (2013). https://doi.org/10.1007/s00228-012-1341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-012-1341-3

Keywords

Navigation