Skip to main content

Advertisement

Log in

The treatment of osteoporosis in patients with rheumatoid arthritis receiving glucocorticoids: a comparison of alendronate and intranasal salmon calcitonin

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study was to assess the effects of alendronate and intranasal salmon calcitonin (sCT) treatments on bone mineral density and bone turnover in postmenopausal osteoporotic women with rheumatoid arthritis (RA) receiving low-dose glucocorticoids.

Methods

Fifty osteoporotic postmenopausal women with RA, who had been treated with low-dose corticosteroids for at least 6 months, were randomized to receive alendronate 10 mg/day or sCT 200 IU/day for a period of 24 months. All patients received calcium supplementation 1,000 mg and vitamin D 400 IU daily. Bone mineral density (BMD) of the lumbar spine, femoral neck, and trochanter was measured annually using dual-energy X-ray absorptiometry. Bone metabolism measurements included urinary deoxypyridinoline (DPD), serum bone alkaline phosphatase (BAP), and serum osteocalcin (OC).

Results

Over 2 years, the lumbar spine (4.34%, P <0.001), femoral neck (2.52%, P <0.05), and trochanteric (1.29%, P <0.05) BMD in the alendronate group increased significantly. The sCT treatment increased lumbar spine BMD (1.75%, P <0.05), whereas a significant bone loss occurred at the femoral neck at month 24 (−3.76%, P <0.01). A nonsignificant decrease in the trochanteric region was observed in the sCT group (−0.81%). The difference between the groups with respect to the femoral neck and trochanteric BMD was statistically significant ( P <0.001and P <0.05, respectively). The decreases in urinary DPD (−21.87%, P <0.001), serum BAP (−10.60%, P <0.01), and OC (−19.59%, P <0.05) values were statistically significant in the alendronate group, whereas nonsignificant decreases were observed in the sCT group (−5.77%, −1.96%, and −4.31%, respectively). A significant difference was found in the DPD and BAP levels between the two treatment groups in favor of the alendronate group at all time points ( P =0.001 and P <0.05, respectively).

Conclusion

The results of this study demonstrated that alendronate treatment produced significantly greater increases in the femoral neck BMD and greater decreases in bone turnover than intranasal sCT in RA patients receiving low dose glucocorticoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Jaarsveld CHM, Jacobs JWG, Van Der Veen MJ, Blaauw AAM, Kruize AA, Hofman DM, Brus HLM (2000) Aggressive treatment in early rheumatoid arthritis: a randomised controlled trial. Ann Rheum Dis 59:468–477

    Article  PubMed  Google Scholar 

  2. DequekerJ, Maenaut K, Verwilghen J, Westhowens R (1995) Osteoporosis in rheumatoid arthritis. Clin Exp Rheumatol 12:S1–6

    Google Scholar 

  3. Suzuki Y, Mizushima Y (1997) Osteoporosis in rheumatoid arthritis. Osteoporos Int 7 [Suppl 3]:S217–222

  4. Celiker R, Gokce-Kutsal Y, Cindas A, Ariyurek M, Renda N, Koray Z, Basgoze O (1995) Osteoporosis in rheumatoid arthritis: effect of disease activity. Clin Rheumatol 14:429–433

    Google Scholar 

  5. Laan RFJM, van Riel PLCM, van de Putte LBA (1992) Bone mass in patients with rheumatoid arthritis. Ann Rheum Dis 51:826–832

    Google Scholar 

  6. Haugeberg G, Uhlig T, Flach JA, Halse JI, Kvien TK (2000) Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis. Results from 394 patients in the Oslo country rheumatoid arthritis register. Arthritis Rheum 43:522–530

    Article  Google Scholar 

  7. Kroger H, Honkanen R, Saarikoski S, Alhave E (1994) Decreased axial bone mineral density in perimenopausal women with rheumatoid arthritis—a population based study. Ann Rheum Dis 53:18–23

    Google Scholar 

  8. Iwamoto J, Takeda T, Ichimura S (2002) Forearm bone mineral density in postmenopausal women with rheumatoid arthritis. Calcif Tissue Int 70:1–8.

    Article  Google Scholar 

  9. Cortet B, Guyot MH, Solau E, Pigny P, Dumoulin F, Flipo RM (2000) Factors influencing bone loss in rheumatoid arthritis: a longitudinal study. Clin Exp Rheumatol 18:683–690

    Google Scholar 

  10. Eastgate JA, Wood NC, Di Giovine FS, Symons JA, Grinlinton FM, Duff GW (1988) Correlation of plasma interleukin-1 levels with disease activity in rheumatoid arthritis. Lancet 340:706–709

    Article  Google Scholar 

  11. Deodhar AA, Woolf AD (1996) Bone mass measurement and bone metabolism in rheumatoid arthritis: a review. Br J Rheumatol 35:309–322

    Google Scholar 

  12. Buckley LM, Leib ES, Cartularo KS, Vacek PM, Cooper SM (1995) Effects of low dose corticosteroids on the bone mineral density of patients with rheumatoid arthritis. J Rheumatol 22:1055–1059

    Google Scholar 

  13. Saario R, Sonninen P, Mottonen T, Viikari J, Toivanen A (1999) Bone mineral density of the lumbar spine in patients with advanced rheumatoid arthritis: influence of functional capacity and corticosteroid use. Scand J Rheumatol 28:363–367

    Article  Google Scholar 

  14. Saag K, Koehnke R, Cadwell J, Brasington R, Burmeister LD, Zimmerman B, et al (1994) Low dose long-term corticosteroid therapy in RA: an analyis of serious adverse events. Am J Med 96:115–123

    Article  Google Scholar 

  15. LoCasvio V, Bonucci E, Imbimbo B, Ballanti P, Adami S, Milani S, et al (1990) Bone loss in response to long-term glucocorticoid therapy. Bone Miner 8:39–51

    Article  CAS  PubMed  Google Scholar 

  16. Peel NF, Moore DJ, Barrington NA, Bax DE, Eastell R (1995) Risk of vertebral fracture and relationship to bone mineral density in steroid treated rheumatoid arthritis. Ann Rheum Dis 54:801–806

    CAS  PubMed  Google Scholar 

  17. Cooper C, Coupland C, Mitchell M (1995) Rheumatoid arthritis, corticosteroid therapy, and hip fractures Ann Rheum Dis 54:49–52

    Google Scholar 

  18. Hasegawa J, Nagashima M, Yamamoto M, Nishijima T, Katsumata S, Yoshino S (2003) Bone resorption and inflammatory inhibition of intermittent cyclical etidronate therapy in rheumatoid arthritis. J Rheumatol 30:474–479

    Google Scholar 

  19. Jenkins EA, Walker-Bone KA, Wood A, McCrae FC, Cooper C, Calwey MID (1999) The prevention of corticosteroid-induced bone loss with intermittent cyclical editronate. Scand J Rheumatol 28:152–156

    Article  Google Scholar 

  20. >Geusens P, Dequeker J, Vanhoof J, Stalmans R, Boonen S, Joly J, et al (1998) Cyclical editronate increases bone density in the spine and hip of postmenopausal women receiving long term corticosteroid treatment. A double blind, randomised, placebo controlled study. Ann Rheum Dis 57:724–727

    Google Scholar 

  21. Eastell R, Devogelaer JP, Peel NFA, Chines AA, Bax DE, et al (2000) Prevention of bone loss with risedronate in glucocorticoid-treated rheumatoid arthritis patients. Osteoporos Int 11:331–337

    Article  Google Scholar 

  22. Eggelmeijer F, Papapoulos SE, vanPaessen H, Dijkmans BEC, Valkema R, Westedt ML (1996) Increased bone mass with pamidronate treatment in rheumatoid arthritis. Arthrits Rheum 39:396–402

    Google Scholar 

  23. Saag KG, Emkey R, Schnitzer TJ, Brown JP, Hawkins F, Goemaere S, et al (1998) Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid Induced Osteoporosis Intervention Study Group. N Engl J Med 339:292–299

    Article  CAS  PubMed  Google Scholar 

  24. Yilmaz L, Ozoran K, Gunduz OH, Ucan H, Yucel M (2001) Alendronate in rheumatoid arthritis patients treated with methotrexate and glucocorticoids. Rheumatol Int 20:65–69

    Article  Google Scholar 

  25. Sileghem A, Geusens P, Dequeker J (1992) Intranasal calcitonin for the prevention of bone erosion and bone loss in rheumatoid arthritis. Ann Rheum Dis 51:761–764

    Google Scholar 

  26. Adachi JD, Bensen WG, Bell MJ, Bianchi FA, Cividino AA, Craig GL, et al (1997) Salmon calcitonin nasal spray in the prevention of corticosteroid-induced osteoporosis. Br J Rheumatol 36:255–259

    Article  Google Scholar 

  27. Arnett FC, Edworthy SM, Bloch DA, et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    CAS  PubMed  Google Scholar 

  28. Prevoo MLL, van’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LBA, van Riel PLCM (1995) Modified disease activity scores that include 28-joint counts: development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38:44–48

    CAS  PubMed  Google Scholar 

  29. Kirwan JR, Reeback JS (1986) Stanford health assessment questionnaire modified to assess disability in British patients with rheumatoid arthritis. Br J Rheumatol 25:206–209

    Google Scholar 

  30. Sambrook PN, Kotowicz M, Nash P, Styles CB, Naganathan V, Henderson-Briffa KN (2003) Prevention and treatment of glucocorticoid-induced osteoporosis: a comparison of calcitriol, vitamin D plus calcium, and alendronate plus calcium. J Bone Miner Res 18:919–924

    Google Scholar 

  31. Adachi JD, Saag KG, Delmas PD, Liberman UA, Emkey RD, Seeman E, et al (2001) Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucucorticoids. Arthritis Rheum 44:202–211

    Article  CAS  PubMed  Google Scholar 

  32. Healey JH, Paget SA, Williams-Russo P, Szatrowski TP, Schneider R, Spiera H (1996) A randomized controlled trial of salmon calcitonin to prevent bone loss in corticosteroid-treated temporal arteritis and polymyalgia rheumatica. Calcif Tissue Int 58:73–80

    Article  Google Scholar 

  33. Sambrook P, Birmingham J, Kelly P, Kempler S, Nuguyen T, Pocock N, et al (1993) Prevention of corticosteroid osteoporosis. A comparison of calcium, calcitriol, and calcitonin. N Engl J Med 17:1747–1752

    Article  Google Scholar 

  34. Kotaniemi A, Piirainen H, Paimela L, Leirisalo-Repo M, Uoti-Reilama K, Lahdentausta P, et al (1996) Is continuous intranasal salmon calitonin effective in treating axial bone loss in patients with active rheumatoid arthritis receiving low dose glucocorticoid therapy? J Rheumatol 23:1875–1879

    Google Scholar 

  35. Cranney A, Welch V, Adachi JD, Homik J, Shea B, Suarez-Almazor ME, et al (2000) Calcitonin for the treatment and prevention of corticosteroid-induced osteoporosis. Cochrane Database Syst Rev 2:CD001983

    Google Scholar 

  36. Takahashi M, Kushida H, Hoshino H, Ohishi T, Inoue T (1997) Evaluation of bone turnover in postmenopausal, vertebral fracture, and hip fracture using biochemical markers for bone formation and resorption. J Endocrinol Invest 20:112–117

    Google Scholar 

  37. Seriolo B, Ferretti V, Sulli A, Caratto E, Fasciolo D, Cutolo M (2002) Serum osteocalcin levels in premenopausal rheumatoid arthritis patients. Ann N Y Acad Sci 966:502–507

    Google Scholar 

  38. Hall GM, Spector TD, Delmas PD (1995) Markers of bone metabolism in postmenopausal women with rheumatoid arthritis: effects of corticosteroids and hormone replacement therapy. Arthritis Rheum 38:902–906

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Funda Tascioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tascioglu, F., Colak, O., Armagan, O. et al. The treatment of osteoporosis in patients with rheumatoid arthritis receiving glucocorticoids: a comparison of alendronate and intranasal salmon calcitonin. Rheumatol Int 26, 21–29 (2005). https://doi.org/10.1007/s00296-004-0496-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-004-0496-3

Keywords

Navigation