Skip to main content

Advertisement

Log in

Wnt-related genes and large-joint osteoarthritis: association study and replication

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) has a strong genetic component, and experimental evidence suggests the involvement of the Wnt pathway in its pathogenesis. Hence, we explored the association of common single nucleotide polymorphisms (SNPs) related to the Wnt pathway with hip and knee OA. Seventy-eight SNPs were analyzed in 606 patients undergoing joint replacement and in 680 control subjects. SNPs were located in WNT1, WNT10A, WNT16, DVL2, FZD5, BCL9, SFRP1, TCF7L1 and SFRP4 genes. SNPs significantly associated with OA were genotyped in an independent group of 369 patients and 407 controls. One SNP in WNT10A, rs3806557, was associated with hip OA in men (OR 0.65, 95 % CI 0.46–0.93; p = 0.017), but the association was not confirmed in the replication phase. The TCF7L1 polymorphism rs11547160 was also associated with hip OA in the discovery set, but not in the replication set. Similarly, the SFRP4 SNP rs1052981 was associated with knee OA in women with OR of 2.73 (95 % CI 1.29–5.8; p = 0.006), but the association was not replicated. The BCL9 polymorphism rs2353525 was associated with knee OA in women, both in the unadjusted and in the age- and BMI-adjusted analysis (OR 2.01; 95 % CI 1.34–2.98; p = 0.0006). A similar, but not statistically significant, trend was observed in the replication phase. In the combined analysis, OR was 3.13 (1.34–7.28; p = 0.009). These data suggest that some SNPs of genes related to the Wnt pathway and, specifically BCL9, influence the genetic predisposition to osteoarthritis of the large joints in a sex- and joint-specific way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, Heyse SP, Hirsch R, Hochberg MC, Hunder GG, Liang MH, Pillemer SR, Steen VD, Wolfe F (1998) Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 41:778–799

    Article  PubMed  CAS  Google Scholar 

  2. Radin EL, Burr DB, Caterson B, Fyhrie D, Brown TD, Boyd RD (1991) Mechanical determinants of osteoarthrosis. Semin Arthritis Rheum 21:12–21

    Article  PubMed  CAS  Google Scholar 

  3. Lories RJ, Luyten FP (2011) The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 7:43–49

    Article  PubMed  CAS  Google Scholar 

  4. Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429–22433

    Article  PubMed  CAS  Google Scholar 

  5. Yuasa T, Otani T, Koike T, Iwamoto M, Enomoto-Iwamoto M (2008) Wnt/β-catenin signaling stimulates matrix catabolic genes and activity in articular chondrocytes: its possible role in joint degeneration. Lab Invest 88:264–274

    Article  PubMed  CAS  Google Scholar 

  6. Blom AB, Brockbank SM, van Lent PL, van Beuningen HM, Geurts J, Takahashi N, van der Kraan PM, van de Loo FA, Schreurs BW, Clements K, Newham P, van den Berg WB (2009) Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1. Arthritis Rheum 60:501–512

    Article  PubMed  CAS  Google Scholar 

  7. Lau KH, Kapur S, Kesavan C, Baylink DJ (2006) Up-regulation of the Wnt, estrogen receptor, insulin-like growth factor-I, and bone morphogenetic protein pathways in C57BL/6J osteoblasts as opposed to C3H/HeJ osteoblasts in part contributes to the differential anabolic response to fluid shear. J Biol Chem 281:9576–9588

    Article  PubMed  CAS  Google Scholar 

  8. Dell’accio F, De Bari C, Eltawil NM, Vanhummelen P, Pitzalis C (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 58:1410–1421

    Article  PubMed  Google Scholar 

  9. Dell’accio F, De Bari C, El Tawil NM, Barone F, Mitsiadis TA, O’Dowd J, Pitzalis C (2006) Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res Ther 8:R139

    Article  PubMed  Google Scholar 

  10. Lories RJ, Peeters J, Bakker A, Tylzanowski P, Derese I, Schrooten J, Thomas JT, Luyten FP (2007) Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum 56:4095–4103

    Article  PubMed  CAS  Google Scholar 

  11. Velasco J, Zarrabeitia MT, Prieto JR, Perez-Castrillon JL, Perez-Aguilar MD, Perez-Nunez MI, Sanudo C, Hernandez-Elena J, Calvo I, Ortiz F, Gonzalez-Macias J, Riancho JA (2010) Wnt pathway genes in osteoporosis and osteoarthritis: differential expression and genetic association study. Osteoporos Int 21:109–118

    Article  PubMed  CAS  Google Scholar 

  12. Lindberg H (1986) Prevalence of primary coxarthrosis in siblings of patients with primary coxarthrosis. Clin Orthop Relat Res 203:273–275

    Google Scholar 

  13. Spector TD, MacGregor AJ (2004) Risk factors for osteoarthritis: genetics. Osteoarthritis Cartilage 12(Suppl A):S39–S44

    Article  PubMed  Google Scholar 

  14. Chitnavis J, Sinsheimer JS, Clipsham K, Loughlin J, Sykes B, Burge PD, Carr AJ (1997) Genetic influences in end-stage osteoarthritis. Sibling risks of hip and knee replacement for idiopathic osteoarthritis. J Bone Joint Surg Br 79:660–664

    Article  PubMed  CAS  Google Scholar 

  15. Riancho JA, Sanudo C, Valero C, Pipaon C, Olmos JM, Mijares V, Fernandez-Luna JL, Zarrabeitia MT (2009) Association of the aromatase gene alleles with BMD: epidemiological and functional evidence. J Bone Miner Res 24:1709–1718

    Article  PubMed  CAS  Google Scholar 

  16. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  17. Conde L, Vaquerizas JM, Dopazo H, Arbiza L, Reumers J, Rousseau F, Schymkowitz J, Dopazo J (2006) PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res 34:W621–W625

    Article  PubMed  CAS  Google Scholar 

  18. Reumers J, Conde L, Medina I, Maurer-Stroh S, Van Durme J, Dopazo J, Rousseau F, Schymkowitz J (2008) Joint annotation of coding and non-coding single nucleotide polymorphisms and mutations in the SNPeffect and PupaSuite databases. Nucleic Acids Res 36:D825–D829

    Article  PubMed  CAS  Google Scholar 

  19. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  CAS  Google Scholar 

  20. Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati N, Martinez-Santibanez G, MacDougald OA (2012) Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 50:477–489

    Article  PubMed  CAS  Google Scholar 

  21. Patsopoulos NA, Tatsioni A, Ioannidis JP (2007) Claims of sex differences: an empirical assessment in genetic associations. JAMA 298:880–893

    Article  PubMed  CAS  Google Scholar 

  22. Ikeya M, Takada S (2001) Wnt-3a is required for somite specification along the anteroposterior axis of the mouse embryo and for regulation of cdx-1 expression. Mech Dev 103:27–33

    Article  PubMed  CAS  Google Scholar 

  23. Morice-Picard F, Kostrzewa E, Wolf C, Benlian P, Taieb A, Lacombe D (2011) Evidence of postzygotic mosaicism in a transmitted form of Conradi-Hunermann-Happle syndrome associated with a novel EBP mutation. Arch Dermatol 147:1073–1076

    Article  PubMed  CAS  Google Scholar 

  24. Hirata M, Kugimiya F, Fukai A, Saito T, Yano F, Ikeda T, Mabuchi A, Sapkota BR, Akune T, Nishida N, Yoshimura N, Nakagawa T, Tokunaga K, Nakamura K, Chung UI, Kawaguchi H (2012) C/EBPβ and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2α as the inducer in chondrocytes. Hum Mol Genet 21:1111–1123

    Article  PubMed  CAS  Google Scholar 

  25. Xiao SM, Gao Y, Cheung CL, Bow CH, Lau KS, Sham PC, Tan KC, Kung AW (2012) Association of CDX1 binding site of periostin gene with bone mineral density and vertebral fracture risk. Osteoporos Int 23:1877–1887

    Article  PubMed  CAS  Google Scholar 

  26. Sustmann C, Flach H, Ebert H, Eastman Q, Grosschedl R (2008) Cell-type-specific function of BCL9 involves a transcriptional activation domain that synergizes with β-catenin. Mol Cell Biol 28:3526–3537

    Article  PubMed  CAS  Google Scholar 

  27. de la Roche M, Worm J, Bienz M (2008) The function of BCL9 in Wnt/β-catenin signaling and colorectal cancer cells. BMC Cancer 8:199

    Article  PubMed  Google Scholar 

  28. Mani M, Carrasco DE, Zhang Y, Takada K, Gatt ME, Dutta-Simmons J, Ikeda H, Diaz-Griffero F, Pena-Cruz V, Bertagnolli M, Myeroff LL, Markowitz SD, Anderson KC, Carrasco DR (2009) BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells. Cancer Res 69:7577–7586

    Article  PubMed  CAS  Google Scholar 

  29. Brack AS, Murphy-Seiler F, Hanifi J, Deka J, Eyckerman S, Keller C, Aguet M, Rando TA (2009) BCL9 is an essential component of canonical Wnt signaling that mediates the differentiation of myogenic progenitors during muscle regeneration. Dev Biol 335:93–105

    Article  PubMed  CAS  Google Scholar 

  30. Herrero-Beaumont G, Roman-Blas JA, Castaneda S, Jimenez SA (2009) Primary osteoarthritis no longer primary: three subsets with distinct etiological, clinical, and therapeutic characteristics. Semin Arthritis Rheum 39:71–80

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by a grant from Instituto de Salud Carlos III (FIS 06/0034). We thank María Torres and Angel Carracedo (Centro Nacional de Genotipado), for genotyping the samples. We also thank Carolina Sañudo, Jana Arozamena and Verónica Mijares for their excellent technical assistance.

Conflict of interest

The authors declare that they do not have conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Riancho.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Ibarbia, C., Pérez-Castrillón, J.L., Ortiz, F. et al. Wnt-related genes and large-joint osteoarthritis: association study and replication. Rheumatol Int 33, 2875–2880 (2013). https://doi.org/10.1007/s00296-013-2821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-013-2821-1

Keywords

Navigation