Skip to main content
Log in

Low iron status as a factor of increased bone resorption and effects of an iron and vitamin D-fortified skimmed milk on bone remodelling in young Spanish women

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to determine whether there is a relationship between iron status and bone metabolism, and to compare the effects of the consumption, as part of the usual diet, of an iron or iron and vitamin D-fortified skimmed milk on bone remodelling in iron-deficient women.

Methods

Young healthy iron-deficient or iron-sufficient women (serum ferritin ≤30 ng/mL or >30 ng/mL, respectively) were recruited. Iron-deficient women were assigned to a nutritional intervention consisting of a randomised, controlled, double-blind, parallel design trial of 16 weeks during winter. They consumed, as part of their usual diet, an iron (Fe group, n = 54) or iron and vitamin D-fortified (Fe+D group, n = 55) flavoured skimmed milk (iron, 15 mg/day; vitamin D3, 5 μg/day, 200 IU). The iron-sufficient women followed their usual diet without supplementation (R group, n = 56). Dietary intake, body weight, iron biomarkers, 25-hydroxyvitamin D (25OHD), parathyroid hormone (PTH), procollagen-type 1 N-terminal propeptide (P1NP), and aminoterminal telopeptide of collagen I (NTx) were determined.

Results

Negative correlations were found between baseline log-ferritin and log-NTx (p < 0.001), and between transferrin and P1NP (p = 0.002). Serum 25OHD increased (from 62 ± 21 to 71 ± 21 nmol/L, mean ± SD, p < 0.001) while P1NP and NTx decreased in Fe+D during the assay (p = 0.004 and p < 0.001, respectively). NTx was lower in Fe+D compared to Fe at week 8 (p < 0.05) and was higher in Fe and Fe+D compared to R throughout the assay (p < 0.01). PTH did not show changes.

Conclusions

Iron deficiency is related with higher bone resorption in young women. Consumption of a dairy product that supplies 5 μg/day of vitamin D3 reduces bone turnover and increases circulating 25OHD to nearly reach an optimal vitamin D status, defined as 25OHD over 75 nmol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Holick MF, Chen TC (2008) Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr 87:1080S–1086S

    CAS  Google Scholar 

  2. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501

    Article  CAS  Google Scholar 

  3. Laird E, Ward M, McSorley E, Strain JJ, Wallace J (2010) Vitamin D and bone health: potential mechanisms. Nutrients 2:693–724. doi:10.3390/nu2070693

    Article  CAS  Google Scholar 

  4. Holick MF (2010) Vitamin D: extraskeletal health. Endocrinol Metab Clin North Am 39:381–400. doi:10.1016/j.ecl.2010.02.016

  5. McGillivray G, Skull SA, Davie G, Kofoed SE, Frydenberg A, Rice J, Cooke R, Carapetis JR (2007) High prevalence of asymptomatic vitamin D and iron deficiency in East African immigrant children and adolescents living in a temperate climate. Arch Dis Child 92:1088–1093

    Article  Google Scholar 

  6. Sim JJ, Lac PT, Liu IL, Meguerditchian SO, Kumar VA, Kujubu DA, Rasgon SA (2010) Vitamin D deficiency and anemia: a cross-sectional study. Ann Hematol 89:447–452. doi:10.1007/s00277-009-0850-3

    Article  CAS  Google Scholar 

  7. Toxqui L, Pérez-Granados AM, Blanco-Rojo R, Wright I, González-Vizcayno C, Vaquero MP (2013) Intake of an iron or iron an vitamin D-fortified skimmed milk and iron metabolism in women. Ann Nutr Metab (in press)

  8. Blanco-Rojo R, Perez-Granados AM, Toxqui L, Zazo P, de la Piedra C, Vaquero MP (2013) Relationship between vitamin D deficiency, bone remodelling and iron status in iron-deficient young women consuming an iron-fortified food. Eur J Nutr 52:695–703. doi:10.1007/s00394-012-0375-8

    Article  CAS  Google Scholar 

  9. Tuderman L, Myllyla R, Kivirikko KI (1977) Mechanism of the prolyl hydroxylase reaction.1. Role of co-substrates. Eur J Biochem 80:341–348

    Article  CAS  Google Scholar 

  10. Diaz-Castro J, Lopez-Frias MR, Campos MS, Lopez-Frias M, Alferez MJ, Nestares T, Ojeda ML, Lopez-Aliaga I (2012) Severe nutritional iron-deficiency anaemia has a negative effect on some bone turnover biomarkers in rats. Eur J Nutr 51:241–247. doi:10.1007/s00394-011-0212-5

    Article  CAS  Google Scholar 

  11. Katsumata S, Tsuboi R, Uehara M, Suzuki K (2006) Dietary iron deficiency decreases serum osteocalcin concentration and bone mineral density in rats. Biosci Biotechnol Biochem 70:2547–2550

    Article  CAS  Google Scholar 

  12. Katsumata S, Katsumata-Tsuboi R, Uehara M, Suzuki K (2009) Severe iron deficiency decreases both bone formation and bone resorption in rats. J Nutr 139:238–243

    Article  CAS  Google Scholar 

  13. Harris MM, Houtkooper LB, Stanford VA, Parkhill C, Weber JL, Flint-Wagner H, Weiss L, Going SB, Lohman TG (2003) Dietary iron is associated with bone mineral density in healthy postmenopausal women. J Nutr 133:3598–3602

    CAS  Google Scholar 

  14. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  CAS  Google Scholar 

  15. Gonzalez-Molero I, Morcillo S, Valdes S, Perez-Valero V, Botas P, Delgado E, Hernandez D, Olveira G, Rojo G, Gutierrez-Repiso C, Rubio-Martin E, Menendez E, Soriguer F (2011) Vitamin D deficiency in Spain: a population-based cohort study. Eur J Clin Nutr 65:321–328

    Article  CAS  Google Scholar 

  16. Vaquero MP, Sanchez-Muniz FJ, Carbajal A, Garcia-Linares MC, Garcia-Fernandez MC, Garcia-Arias MT (2004) Mineral and vitamin status in elderly persons from Northwest Spain consuming an Atlantic variant of the Mediterranean diet. Ann Nutr Metab 48:125–133

    Article  CAS  Google Scholar 

  17. Mata-Granados JM, Luque de Castro MD, Quesada Gomez JM (2008) Inappropriate serum levels of retinol, alpha-tocopherol, 25 hydroxyvitamin D3 and 24,25 dihydroxyvitamin D3 levels in healthy Spanish adults: simultaneous assessment by HPLC. Clin Biochem 41:676–680. doi:10.1016/j.clinbiochem.2008.02.003

    Article  CAS  Google Scholar 

  18. McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B (2009) Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr 12:444–454. doi:10.1017/S1368980008002401

    Article  Google Scholar 

  19. Lips P (2010) Worldwide status of vitamin D nutrition. J Steroid Biochem Mol Biol 121:297–300. doi:10.1016/j.jsbmb.2010.02.021

    Article  CAS  Google Scholar 

  20. Moreiras O, Carbajal A, Cabrera L, Cuadrado C (2009) Ingestas recomendadas de energía y nutrientes para la población española. In: Tablas de composición de alimentos. Pirámide, Grupo Anaya, SA, Madrid, pp 227–230

  21. Institute of Medicine (2001) Iron. In: Institute of Medicine and Food and Nutrition Board (ed) Dietary Reference Intakes for Vitamin A, Vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academic Press, Washington, DC, pp 290–393

    Google Scholar 

  22. Ross AC, Taylor CL, Yaktine AL, Del Valle HB (2011) Dietary Reference Intakes for Calcium Vitamin D. The National Academic Press, Washington, D.C

    Google Scholar 

  23. Ferrar L, van der Hee RM, Berry M, Watson C, Miret S, Wilkinson J, Bradburn M, Eastell R (2011) Effects of calcium-fortified ice cream on markers of bone health. Osteoporos Int 22:2721–2731. doi:10.1007/s00198-010-1513-x

    Article  CAS  Google Scholar 

  24. D’Amelio P, Cristofaro MA, Tamone C, Morra E, Di Bella S, Isaia G, Grimaldi A, Gennero L, Gariboldi A, Ponzetto A, Pescarmona GP, Isaia GC (2008) Role of iron metabolism and oxidative damage in postmenopausal bone loss. Bone 43:1010–1015. doi:10.1016/j.bone.2008.08.107

    Article  Google Scholar 

  25. Medeiros DM, Stoecker B, Plattner A, Jennings D, Haub M (2004) Iron deficiency negatively affects vertebrae and femurs of rats independently of energy intake and body weight. J Nutr 134:3061–3067

    CAS  Google Scholar 

  26. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58. doi:10.1210/jc.2010-2704

    Article  CAS  Google Scholar 

  27. van Schoor NM, Lips P (2011) Worldwide vitamin D status. Best Pract Res Clin Endocrinol Metab 25:671–680. doi:10.1016/j.beem.2011.06.007S1521-690X(11)00071-6

    Article  Google Scholar 

  28. Rodriguez Sangrador M, Beltran de Miguel B, Cuadrado Vives C, Moreiras Tuny O (2010) Influence of sun exposure and diet to the nutritional status of vitamin D in adolescent Spanish women: the five countries study (OPTIFORD Project). Nutr Hosp 25:755–762

    CAS  Google Scholar 

  29. Groba MV, Miravalle A, Gonzalez-Rodriguez E, García-Santana S, Gonzalez-Padilla E, Saavedra P, Soria A, Sosa M (2010) Factors related to vitamin D deficiency in medical students in Gran Canaria. Revista de osteoporosis y metabolismo mineral 2:11–18

    Google Scholar 

  30. Federación Española de Sociedades de Nutrición Alimentación y Dietética (FESNAD) (2010) Ingestas Dietéticas de Referencia (IDR) para la población española. EUNSA, Navarra

    Google Scholar 

  31. Vinas BR, Barba LR, Ngo J, Gurinovic M, Novakovic R, Cavelaars A, de Groot LC, van’t Veer P, Matthys C, de Majem LS (2011) Projected prevalence of inadequate nutrient intakes in Europe. Ann Nutr Metab 59:84–95. doi:10.1159/000332762

    Article  Google Scholar 

  32. Vaquero MP, Navarro MP (2013) Minerales. Libro blanco de la nutrición en España. Fundación Española de Nutrición, Madrid, pp 157–163

    Google Scholar 

  33. Kemi VE, Kärkkäinen MU, Lamberg-Allardt CJ (2006) High phosphorus intakes acutely and negatively affect Ca and bone metabolism in a dose-dependent manner in healthy young females. Br J Nutr 96:545–552

    CAS  Google Scholar 

  34. Battault S, Whiting SJ, Peltier SL, Sadrin S, Gerber G, Maixent JM (2013) Vitamin D metabolism, functions and needs: from science to health claims. Eur J Nutr 52:429–441. doi:10.1007/s00394-012-0430-5

    Article  CAS  Google Scholar 

  35. Blanco-Rojo R, Perez-Granados AM, Toxqui L, Gonzalez-Vizcayno C, Delgado MA, Vaquero MP (2011) Efficacy of a microencapsulated iron pyrophosphate-fortified fruit juice: a randomised, double-blind, placebo-controlled study in Spanish iron-deficient women. Br J Nutr 105:1652–1659. doi:10.1017/S0007114510005490

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by Project AGL2009-11437. LT and RBR were supported by a JAE-predoc grant from CSIC and European Social Fund. The authors are grateful to the volunteers who participated in the study. CAPSA (Spain) is acknowledged for providing the dairy products.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pilar Vaquero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toxqui, L., Pérez-Granados, A.M., Blanco-Rojo, R. et al. Low iron status as a factor of increased bone resorption and effects of an iron and vitamin D-fortified skimmed milk on bone remodelling in young Spanish women. Eur J Nutr 53, 441–448 (2014). https://doi.org/10.1007/s00394-013-0544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0544-4

Keywords

Navigation