Skip to main content
Log in

Identification of rare genetic variants in novel loci associated with Paget’s disease of bone

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

In genome-wide association studies, single nucleotide polymorphisms located in five novel loci were associated with PDB. We aimed at identifying rare genetic variants of candidate genes located in these loci and search for genetic association with PDB in the French-Canadian population. Exons, promoter and exon–intron junctions from patients with familial PDB and healthy individuals were sequenced in candidate genes, located within novel loci associated with PDB in our population. Rare variant was defined by a minor allele frequency <0.05 or absent from dbSNP (NCBI). We sequenced seven genes in 1p13 locus, three genes in 7q33, three genes in 8q22, and five genes in 15q24 locus. We identified 126 rare variants in at least one patient with PDB of whom 55 were located in 1p13 locus, 32 in 7q33, 10 in 8q22 and 29 in 15q24 locus. We located 71 of these 126 rare variants in an intron, 30 in an exon and 9 in an untranslated region. 60 % of these variants were located in functionally relevant gene regions. Among the 12 missense rare variants in PDB, two (rs62620995 in TM7SF4; rs62641691 in CD276) were predicted to be damaging by in silico analysis tools. Rs62620995, which altered a conserved amino acid (p.Leu397Phe) in the TM7SF4 gene, encoding the DC-STAMP protein involved in osteoclastogenesis through RANK signaling pathway, was found to have a marginal association with PDB (p = 0.09). Rs35500845, located in the CTHRC1 gene, which encodes a regulator of collagen matrix deposition, was also associated with PDB in the French-Canadian population (p = 0.046).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albagha OM, Visconti MR, Alonso N, Langston AL, Cundy T, Dargie R, Dunlop MG, Fraser WD, Hooper MJ, Isaia G, Nicholson GC, del Pino Montes J, Gonzalez-Sarmiento R, di Stefano M, Tenesa A, Walsh JP, Ralston SH (2010) Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone. Nat Genet 42:520–524 (pii:ng.562)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Albagha OM, Wani SE, Visconti MR, Alonso N, Goodman K, Brandi ML, Cundy T, Chung PY, Dargie R, Devogelaer JP, Falchetti A, Fraser WD, Gennari L, Gianfrancesco F, Hooper MJ, Van Hul W, Isaia G, Nicholson GC, Nuti R, Papapoulos S, Montes Jdel P, Ratajczak T, Rea SL, Rendina D, Gonzalez-Sarmiento R, Di Stefano M, Ward LC, Walsh JP, Ralston SH (2011) Genome-wide association identifies three new susceptibility loci for Paget’s disease of bone. Nat Genet 43:685–689 (pii:ng.845)

    Article  CAS  PubMed  Google Scholar 

  • Asimit J, Zeggini E (2009) Testing for rare variant associations in complex diseases. Genome Med 1:24. doi:10.1186/gm238

    Article  PubMed  Google Scholar 

  • Bodmer W, Bonilla C (2008) Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 40:695–701 (pii:ng.f.136)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bodmer W, Tomlinson I (2010) Rare genetic variants and the risk of cancer. Curr Opin Genet Dev 20:262–267. doi:10.1016/j.gde.2010.04.016

    Article  CAS  PubMed  Google Scholar 

  • Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11:415–425. doi:10.1038/nrg2779

    Article  CAS  PubMed  Google Scholar 

  • Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH (2004) Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305:869–872. doi:10.1126/science.1099870

    Article  CAS  PubMed  Google Scholar 

  • Frazer KA, Murray SS, Schork NJ, Topol EJ (2009) Human genetic variation and its contribution to complex traits. Nat Rev Genet 10:241–251. doi:10.1038/nrg2554

    Article  CAS  PubMed  Google Scholar 

  • Gibson G (2011) Rare and common variants: twenty arguments. Nat Rev Genet 13:135–145. doi:10.1038/nrg3118

    Article  Google Scholar 

  • Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI (2008) Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet 82:100–112. doi:10.1016/j.ajhg.2007.09.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haldane JB (1956) The estimation and significance of the logarithm of a ratio of frequencies. Ann Hum Genet 20:309–311

    Article  CAS  PubMed  Google Scholar 

  • Hartgers FC, Vissers JL, Looman MW, van Zoelen C, Huffine C, Figdor CG, Adema GJ (2000) DC-STAMP, a novel multimembrane-spanning molecule preferentially expressed by dendritic cells. Eur J Immunol 30:3585–3590. doi:10.1002/1521-4141(200012)30:12<3585:AID-IMMU3585>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  • Hershberger RE, Parks SB, Kushner JD, Li D, Ludwigsen S, Jakobs P, Nauman D, Burgess D, Partain J, Litt M (2008) Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy. Clin Transl Sci 1:21–26. doi:10.1111/j.1752-8062.2008.00017.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hershberger RE, Norton N, Morales A, Li D, Siegfried JD, Gonzalez-Quintana J (2010) Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ Cardiovasc Genet 3:155–161. doi:10.1161/CIRCGENETICS.109.912345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iascone M, Ciccone R, Galletti L, Marchetti D, Seddio F, Lincesso AR, Pezzoli L, Vetro A, Barachetti D, Boni L, Federici D, Soto AM, Comas JV, Ferrazzi P, Zuffardi O (2012) Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clin Genet 81:542–554. doi:10.1111/j.1399-0004.2011.01674.x

    Article  CAS  PubMed  Google Scholar 

  • Kent JW, Farook V, Göring HHH, Dyer TD, Almasy L, Duggirala R, Blangero J (2011) Do rare variant genotypes predict common variant genotypes? In: BMC Proceedings, p S87

  • Kimura H, Kwan KM, Zhang Z, Deng JM, Darnay BG, Behringer RR, Nakamura T, de Crombrugghe B, Akiyama H (2008) Cthrc1 is a positive regulator of osteoblastic bone formation. PLoS One 3:e3174. doi:10.1371/journal.pone.0003174

    Article  PubMed Central  PubMed  Google Scholar 

  • Laroche M, Delmotte A (2005) Increased arterial calcification in Paget’s disease of bone. Calcif Tissue Int 77:129–133. doi:10.1007/s00223-005-0250-1

    Article  CAS  PubMed  Google Scholar 

  • Lathrop GM, Lalouel JM (1984) Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet 36:460–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • LeClair RJ, Durmus T, Wang Q, Pyagay P, Terzic A, Lindner V (2007) Cthrc1 is a novel inhibitor of transforming growth factor-beta signaling and neointimal lesion formation. Circ Res 100:826–833. doi:10.1161/01.RES.0000260806.99307.72

    Article  CAS  PubMed  Google Scholar 

  • Li WF, Hou SX, Ferec C, Chen JM (2011) Osteoporosis: Genetics. Encyclopedia of Life Sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0022925

  • Lusis AJ, Pajukanta P (2008) A treasure trove for lipoprotein biology. Nat Genet 40:129–130. doi:10.1038/ng0208-129

    Article  CAS  PubMed  Google Scholar 

  • Lyles KW, Siris ES, Singer FR, Meunier PJ (2001) A clinical approach to diagnosis and management of Paget’s disease of bone. J Bone Miner Res 16:1379–1387. doi:10.1359/jbmr.2001.16.8.1379

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753. doi:10.1038/nature08494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marian AJ (2012) Molecular genetic studies of complex phenotypes. Transl Res 159:64–79. doi:10.1016/j.trsl.2011.08.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mendes AI, Mascarenhas MR, Matos S, Sousa I, Ferreira J, Barbosa AP, Bicho M, Jordan P (2011) A WNK4 gene variant relates to osteoporosis and not to hypertension in the Portuguese population. Mol Genet Metab 102:465–469. doi:10.1016/j.ymgme.2010.12.010

    Article  CAS  PubMed  Google Scholar 

  • Mensah KA, Ritchlin CT, Schwarz EM (2010) RANKL induces heterogeneous DC-STAMP(lo) and DC-STAMP(hi) osteoclast precursors of which the DC-STAMP(lo) precursors are the master fusogens. J Cell Physiol 223:76–83. doi:10.1002/jcp.22012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyamoto T (2011) Regulators of osteoclast differentiation and cell-cell fusion. Keio J Med 60:101–105

    Article  CAS  PubMed  Google Scholar 

  • Morales-Piga AA, Rey-Rey JS, Corres-Gonzalez J, Garcia-Sagredo JM, Lopez-Abente G (1995) Frequency and characteristics of familial aggregation of Paget’s disease of bone. J Bone Miner Res 10:663–670

    Article  CAS  PubMed  Google Scholar 

  • Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–389. doi:10.1126/science.1167728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pyagay P, Heroult M, Wang Q, Lehnert W, Belden J, Liaw L, Friesel RE, Lindner V (2005) Collagen triple helix repeat containing 1, a novel secreted protein in injured and diseased arteries, inhibits collagen expression and promotes cell migration. Circ Res 96:261–268. doi:10.1161/01.RES.0000154262.07264.12

    Article  CAS  PubMed  Google Scholar 

  • Roodman GD, Windle JJ (2005) Paget disease of bone. J Clin Invest 115:200–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singer FR, Mills BG, Gruber HE, Windle JJ, Roodman GD (2006) Ultrastructure of bone cells in Paget’s disease of bone. J Bone Miner Res 21(Suppl 2):P51–P54. doi:10.1359/jbmr.06s209

    Article  PubMed  Google Scholar 

  • Siris ES, Ottman R, Flaster E, Kelsey JL (1991) Familial aggregation of Paget’s disease of bone. J Bone Miner Res 6:495–500

    Article  CAS  PubMed  Google Scholar 

  • Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241

    Article  CAS  PubMed  Google Scholar 

  • Strickberger SA, Schulman SP, Hutchins GM (1987) Association of Paget’s disease of bone with calcific aortic valve disease. Am J Med 82:953–956

    Article  CAS  PubMed  Google Scholar 

  • Wright T, Rea SL, Goode A, Bennett AJ, Ratajczak T, Long JE, Searle MS, Goldring CE, Park BK, Copple IM, Layfield R (2013) The S349T mutation of SQSTM1 links Keap1/Nrf2 signalling to Paget’s disease of bone. Bone 52:699–706. doi:10.1016/j.bone.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Niu T, Wang W, Li J, Li S, Janicki JS, Ruiz S, Meyer CJ, Wang XL, Tang D, Zhao Y, Cui T (2012) Triterpenoid dihydro-CDDO-trifluoroethyl amide protects against maladaptive cardiac remodeling and dysfunction in mice: a critical role of Nrf2. PLoS One 7:e44899. doi:10.1371/journal.pone.0044899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202:345–351. doi:10.1084/jem.20050645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan Jenny Chung P, Van Hul W (2011) Paget’s disease of bone: evidence for complex pathogenetic interactions. Semin Arthritis Rheum. (pii:S0049-0172(11)00199-5)

  • Zhang J (2000) Rates of conservative and radical nonsynonymous nucleotide substitutions in mammalian nuclear genes. J Mol Evol 50:56–68

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mariejka Beauregard was supported by a summer program for medicine student award from the Canadian Institute of Health Research, followed by a scholarship of the Fonds de Recherche du Québec-Santé (FRQ-S) for the Master. Dr. Michou is supported by a career award from the FRQ-S. This study was funded by the Canadian Institute of Health Research (Catalyst Grant: Bone Health), the Fondation du CHUQ, the Canadian Foundation for Innovation, the FRQ-S, the Laval University and the CHU de Québec Research Centre.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laëtitia Michou.

Additional information

Accession numbers Nucleotide sequence data for novel reported rare variants (Table 2) are permanently available from the ENA browser at http://www.ebi.ac.uk/ena/data/view/HG005313-HG005349 once they are released into the public domain, in the ‘European Nucleotide Archive’ database.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 238 kb)

Web resources

Web resources

Database

Cobalt:

http://www.ncbi.nlm.nih.gov/tools/cobalt/

EntrezGene:

http://www.ncbi.nlm.nih.gov/gene

EntrezSNP:

http://www.ncbi.nlm.nih.gov/snp

GENATLAS:

http://www.genatlas.org

GeneCards:

http://www.genecards.org

GeneLoc:

http://genecards.weizmann.ac.il/geneloc/index.shtml

HomoloGene:

http://www.ncbi.nlm.nih.gov/homologene

OMIM:

http://www.ncbi.nlm.nih.gov/omim

Pfam:

http://pfam.sanger.ac.uk

RefSeq:

http://www.ncbi.nlm.nih.gov/RefSeq

UniProtKB:

http://www.uniprot.org/help/uniprotkb

WikiGenes:

http://www.wikigenes.org

In silico prediction tools

Condel:

http://bg.upf.edu/condel/home

ConSite:

http://asp.ii.uib.no:8090/cgi-bin/CONSITE/consite

Ensembl64:

http://useast.ensembl.org/index.html

Human Splicing Finder:

http://www.umd.be/HSF

MicroCosm Targets:

http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5

PolyPhen:

http://genetics.bwh.harvard.edu/pph2

Primer3:

http://biotools.umassmed.edu/bioapps/primer3_www.cgi

Quanto 1.2.4:

http://hydra.usc.edu/GxE

SIFT:

http://sift.jcvi.org

TFSearch:

http://www.cbrc.jp/research/db/TFSEARCH.htm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beauregard, M., Gagnon, E., Guay-Bélanger, S. et al. Identification of rare genetic variants in novel loci associated with Paget’s disease of bone. Hum Genet 133, 755–768 (2014). https://doi.org/10.1007/s00439-013-1409-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1409-x

Keywords

Navigation