Skip to main content

Advertisement

Log in

The effect of risedronate treatment on serum cytokines in postmenopausal osteoporosis: a 6-month randomized and controlled study

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

There is much evidence suggesting that the decline in ovarian function after menopause is associated with spontaneous increases in proinflammatory cytokines. Treatment with risedronate is accompanied by significant changes in bone turnover and bone mineral density. The objective of this study was to determine the effects of risedronate treatment on the level of serum cytokines including receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin among postmenopausal women with osteoporosis. The study group consisted of 61 postmenopausal women with osteoporosis. Patients were randomly divided in two groups: In group 1 (n = 41) postmenopausal women received oral risedronate (35 mg/week), calcium (1,000 mg/day), and vitamin D (400 IU/day) for 12 months. In group 2 (control group; n = 20) patients received only oral calcium (1,000 mg/day) and vitamin D (400 IU/day). Bone mineral density (BMD) of lumbar spine (L1–L4) and proximal femur were determined using dual X-ray absorptiometry at baseline and after one year. Venous blood samples were obtained for determination of serum cytokines including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), RANKL, osteoprotegerin, and markers of bone formation and resorption. Levels of serum cytokines were measured before therapy and after three and 6 months. Markers of bone metabolism were studied before therapy and after 6 months. In group 1 (risedronate plus calcium/vitamin D-treated patients), serum levels of RANKL and IL-1β significantly decreased and the level of osteoprotegerin significantly increased after three and 6 months, but no significant difference was found in TNF-α level. In group 2, however, the level of serum cytokines did not change after three and 6 months. In cases of bone turnover, both markers of bone resorption and formation significantly decreased after 6 months in group 1. In conclusion risedronate could improve osteoporosis by increasing osteoprotegerin and reducing RANKL and IL-1β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pacifici R, Brown C, Puscheck E, Friedrich E, Slatopolsky E, Maggio D, Mccracken R, Avioli LV (1991) Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc Natl Acad Sci 88:5134–5138

    Article  PubMed  CAS  Google Scholar 

  2. Riggs BL, Khosla S, Melton LJ (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  PubMed  CAS  Google Scholar 

  3. Khosla S, Melton LJ, Riggs BL (2002) Estrogen and the male skeleton. J Clin Endocrinol Metab 87:1443–1450

    Google Scholar 

  4. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    Article  PubMed  CAS  Google Scholar 

  5. Morel G, Boivin G, David L, Dubois PM, Meunier PJ (1985) Immunocytochemical evidence for endogenous calcitonin and parathyroid hormone in osteoblasts from the calvaria of neonatal mice. Absence of endogenous estradiol and estradiol receptors. Cell Tissue Res 240:89–93

    Article  PubMed  CAS  Google Scholar 

  6. Hustmyer FG, Walker E, Yu XP, Girasole G, Sakagami Y, Peacock M, Manolagas SC (1993) Cytokine production and surface antigen expression by peripheral blood mononuclear cells in postmenopausal osteoporosis. J Bone Miner Res 8:51–59

    PubMed  CAS  Google Scholar 

  7. Pacifici, R (1996) Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 11:1043–1051

    Google Scholar 

  8. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230

    PubMed  CAS  Google Scholar 

  9. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  10. Nakamura M, Udagawa N, Matsuura S, Mogi M, Nakamura H, Horiuchi H, Saito N, Hiraoka BY, Kobayashi Y, Takaoka K, Ozawa H, Miyazawa H, Takahashi N (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144:5441–5449

    Article  PubMed  CAS  Google Scholar 

  11. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12

    Article  PubMed  CAS  Google Scholar 

  12. Arron JR, Choi Y (2000) Bone versus immune system. Nature 408:535–536

    Article  PubMed  CAS  Google Scholar 

  13. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  PubMed  CAS  Google Scholar 

  14. Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, Frith JC (2000) Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88:2961–2978

    Google Scholar 

  15. Sefc L, Broulik P, Pelichovska T, Necas E (2007) Risedronate has no adverse effects on mouse haematopoiesis. Folia Biologica (Praha) 53:143–145

    CAS  Google Scholar 

  16. Kanis JA, Melton LJ, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    PubMed  CAS  Google Scholar 

  17. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  PubMed  CAS  Google Scholar 

  18. Stejskal D, Bartek J, Pastorkova R, Ruzicka V, Oral I, Horalik D (2001) Osteoprotegerin, RANK, RANKL. Biomed Pap 145:61–64

    CAS  Google Scholar 

  19. Schneeweis LA, Willard D, Milla ME (2005) Functional dissection of osteoprotegerin and its interaction with receptor activator of NF-kappaB ligand. J Biol Chem 280:41155–41164

    Article  PubMed  CAS  Google Scholar 

  20. Skladala P, Jilkova Z, Svoboda I, Kolar V (2005) Investigation of osteoprotegerin interactions with ligands and antibodies using piezoelectric biosensors. Biosens and Bioelectron 20:2027–2034

    Article  CAS  Google Scholar 

  21. Dobnig H, Hofbauer LC, Viereck V, Obermayer-Pietsch B, Fahrleitner-Pammer A (2006) Changes in the RANK ligand/osteoprotegerin system are correlated to changes in bone mineral density in bisphosphonate-treated osteoporotic patients. Osteoporos Int 17:693–703

    Article  PubMed  CAS  Google Scholar 

  22. Anastasilakis AD, Goulis DG, Polyzos SA, Gerou S, Koukoulis G, Kita M, Avramidis A (2008) Serum osteoprotegerin and RANKL are not specifically altered in women with postmenopausal osteoporosis treated with teriparatide or risedronate: a randomized, controlled trial. Horm Metab Res 40:281–285

    Article  PubMed  CAS  Google Scholar 

  23. Valleala H, Mandelin J, Laasonen L, Koivula M, Risteli J, Konttinen Y (2003) Effect of cyclical intermittent etidronate therapy on circulating osteoprotegerin levels in patients with rheumatoid arthritis. Eur J Endocrinol 148:527–530

    Article  PubMed  CAS  Google Scholar 

  24. Alvarez L, Peris P, Guanabens N, Vidal S, Ros I, Pons F, Filella X, Monegal A, Munoz-Gomez J, Ballesta A (2003) Serum osteoprotegerin and its ligand in Paget’s disease of bone: relationship to disease activity and effect of treatment with bisphosphonates. Arthritis Rheum 48:824–828

    Article  PubMed  CAS  Google Scholar 

  25. Pan B, Farrugia AN, To LB, Findlay DM, Green J, Lynch K, Zannettino AC (2004) The nitrogen-containing bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblast-like cells by activating TNF-alpha converting enzyme (TACE). J Bone Miner Res 19:147–154

    Article  PubMed  CAS  Google Scholar 

  26. Martini G, Gennari L, Merlotti D, Salvadori S, Franci M, Campagna S, Avanzati A, De Paola V, Valleggi F, Nuti R (2007) Serum OPG and RANKL levels before and after intravenous bisphosphonate treatment in Paget’s disease of bone. Bone 40:457–463

    Article  PubMed  CAS  Google Scholar 

  27. Viereck V, Emons G, Lauck V, Frosch KH, Blaschke S, Gründker C, Hofbauer LC (2002) Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun 291:680–686

    Article  PubMed  CAS  Google Scholar 

  28. Mackie PS, Fisher JL, Zhou H, Choong PF (2001) Bisphosphonates regulate cell growth and gene expression in the UMR 106-01 clonal rat osteosarcoma cell line. Br J Cancer 84:951–958

    Article  PubMed  CAS  Google Scholar 

  29. Nakamura I, Jimi E (2006) Regulation of osteoclast differentiation and function by interleukin-1. Viman Horm 74:357–370

    CAS  Google Scholar 

  30. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488

    Article  PubMed  CAS  Google Scholar 

  31. Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL (2005) IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest 115:282–290

    PubMed  CAS  Google Scholar 

  32. Papadaki HA, Tsatsanis C, Christoforidou A, Malliaraki N, Psyllaki M, Pontikoglou C, Miliaki M, Margioris AN, Eliopoulos GD (2004) Alendronate reduces serum TNFalpha and IL-1beta, increases neutrophil counts, and improves bone mineral density and bone metabolism indices in patients with chronic idiopathic neutropenia (CIN)-associated osteopenia/osteoporosis. J Bone Miner Metab 22:577–587

    Article  PubMed  CAS  Google Scholar 

  33. Cecchini MG, Fleisch H (1990) Bisphosphonates in vitro specifically inhibit, among the hematopoietic series, the development of the mouse mononuclear phagocyte lineage. J Bone Miner Res 5:1019–1027

    Article  PubMed  CAS  Google Scholar 

  34. Stevenson PH, Stevenson JR (1986) Cytotoxic and migration inhibitory effects of bisphosphonates on macrophages. Calcif Tissue Int 38:227–233

    Article  PubMed  CAS  Google Scholar 

  35. Pennanen N, Lapinjpli S, Urtti A, Monkkonen J (1995) Effect of liposomal and free bisphosphonates on the IL-1β, IL-6 and TNFα secretion from RAW 264 cells in vitro. Pharmacol Res 12:916–922

    Article  CAS  Google Scholar 

  36. Bijvoet OL, Frijlink WB, Jie K, van der Linden H, Meijer CJ, Mulder H, van Paasen HC, Reitsma PH, te Velde J, de Vries E, van der Wey JP (1980) APD in Paget’s disease of bone. Role of the mononuclear phagocyte system? Arthritis Rheum 23:1193–1204

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit Dundar.

About this article

Cite this article

Dundar, U., Kavuncu, V., Ciftci, I.H. et al. The effect of risedronate treatment on serum cytokines in postmenopausal osteoporosis: a 6-month randomized and controlled study. J Bone Miner Metab 27, 464–470 (2009). https://doi.org/10.1007/s00774-009-0055-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-009-0055-9

Keywords

Navigation