Skip to main content

Advertisement

Log in

Pamidronate treatment stimulates the onset of recovery phase reducing fracture rate and skeletal deformities in patients with idiopathic juvenile osteoporosis: comparison with untreated patients

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Although spontaneous remission occurs in patients with idiopathic juvenile osteoporosis (IJO), permanent bone deformities may occur. The effects of long-term pamidronate treatment on clinical findings, bone mineral status, and fracture rate were evaluated. Nine patients (age 9.8 ± 1.1 years, 7 males) with IJO were randomized to intravenous pamidronate (0.8 ± 0.1 mg/kg per day for 3 days; cycles per year 2.0 ± 0.1; duration 7.3 ± 1.1 years; n = 5) or no treatment (n = 4). Fracture rate, phalangeal quantitative ultrasound, and lumbar bone mineral density (BMD) by dual energy X-ray absorptiometry at entry and during follow-up (range 6.3–9.4 years) were assessed. Bone pain improved in treated patients. Difficulty walking continued for 3–5 years in untreated patients, and vertebral collapses occurred in three of them. During follow-up, phalangeal amplitude-dependent speed of sound (AD-SoS), bone transmission time (BTT), and lumbar BMDarea and BMDvolume progressively increased in treated patients (P < 0.05–P < 0.0001). In untreated patients AD-SoS and BTT decreased during the first 2–4 years of follow-up (P < 0.05–P < 0.01); lumbar BMDarea increased after 6 years (P < 0.001) whereas BTT and lumbar BMDvolume increased after 7 years of follow-up (P < 0.05 and P < 0.001, respectively). At the end of follow-up, AD-SoS, BTT, lumbar BMDarea, and BMDvolume Z-scores were lower in untreated patients than in treated patients (−2.2 ± 0.3 and −0.5 ± 0.2; −1.9 ± 0.2 and −0.6 ± 0.2; −2.3 ± 0.3 and −0.7 ± 0.3; −2.4 ± 0.2 and −0.7 ± 0.3, P < 0.0001, respectively). Fracture rate was higher in untreated patients than in treated patients during the first 3 years of follow-up (P < 0.02). Our study showed that spontaneous recovery of bone mineral status is unsatisfactory in patients with IJO. Pamidronate treatment stimulated the onset of recovery phase reducing fracture rate and permanent disabilities without evidence of side-effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dent CE, Friedman M (1965) Idiopathic juvenile osteoporosis. Q J Med 34:177–210

    PubMed  CAS  Google Scholar 

  2. Brenton DP, Dent CE (1995) Idiopathic juvenile osteoporosis. In: Bicket JH, Stern J (eds) Inborn errors of calcium and bone metabolism. University Park Press, Baltimore, pp 223–238

    Google Scholar 

  3. Smith R (1995) Idiopathic juvenile osteoporosis: experience of twenty-one patients. Br J Rheumatol 34:68–77

    Article  PubMed  CAS  Google Scholar 

  4. Lorenc RS (2002) Idiopathic juvenile osteoporosis. Calcif Tissue Int 70:395–397

    Article  PubMed  CAS  Google Scholar 

  5. Teotia M, Teotia SPS, Singh RK (1979) Idiopathic juvenile osteoporosis. Am J Dis Child 133:894–900

    PubMed  CAS  Google Scholar 

  6. Jackson EC, Strife F, Tsang RC, Marder HK (1988) Effect of calcitonin replacement therapy in idiopathic juvenile osteoporosis. Am J Dis Child 142:1237–1239

    PubMed  CAS  Google Scholar 

  7. Krassas GE (2000) Idiopathic juvenile osteoporosis. Ann N Y Acad Sci 900:409–412

    Article  PubMed  CAS  Google Scholar 

  8. Marder HK, Tsang RC, Hug G, Crawford AC (1982) Calcitriol deficiency in idiopathic juvenile osteoporosis. Am J Dis Child 136:914–917

    PubMed  CAS  Google Scholar 

  9. Saggese G, Bertelloni S, Baroncelli GI, Perri G, Calderazzi A (1991) Mineral metabolism and calcitriol therapy in idiopathic juvenile osteoporosis. Am J Dis Child 145:457–462

    PubMed  CAS  Google Scholar 

  10. Hoekman K, Papapoulos SE, Peters ACB, Bijvoet OLM (1985) Characteristics and bisphosphonate treatment of a patient with juvenile osteoporosis. J Clin Endocrinol Metab 61:952–956

    Article  PubMed  CAS  Google Scholar 

  11. Tick D, Singer F, Rimoin D (1991) Pamidronate disodium in the treatment of idiopathic juvenile osteoporosis. Am J Hum Genet 49:S180 (abs)

    Google Scholar 

  12. Levis S, Gruber HE, Cohn D, Howard GA, Roos BA (1993) Juvenile osteoporosis treated with pamidronate. Calcif Tissue Int 52:S41 (abs)

    Google Scholar 

  13. Shaw NJ, Boivin CM, Crabtree NJ (2000) Intravenous pamidronate in juvenile osteoporosis. Arch Dis Child 83:143–145

    Article  PubMed  CAS  Google Scholar 

  14. Kaufman RP, Overton TH, Shiflett M, Jennings JC (2001) Osteoporosis in children and adolescent girls: case report of idiopathic juvenile osteoporosis and review of the literature. Obstet Gynecol Surv 56:492–504

    Article  Google Scholar 

  15. Gandrup LM, Cheung JC, Daniels MW, Bachrach LK (2003) Low-doses intravenous pamidronate reduces fractures in childhood osteoporosis. J Pediatr Endocrinol Metab 16:887–892

    Google Scholar 

  16. Sumník Z, Land C, Rieger-Wettengl G, Körber F, Stabrey A, Schoenau E (2004) Effect of pamidronate treatment on vertebral deformity in children with primary osteoporosis. A pilot study using radiographic morphometry. Horm Res 61:137–142

    Article  PubMed  Google Scholar 

  17. Melchior R, Zabel B, Spranger J, Schumacher R (2005) Effective parenteral clodronate treatment of a child with severe juvenile idiopathic osteoporosis. Eur J Pediatr 164:22–27

    Article  PubMed  Google Scholar 

  18. Baroncelli GI, Federico G, Vignolo M, Valerio G, del Puente A, Maghnie M, Baserga M, Farello G, Saggese G, The Phalangeal Quantitative Ultrasound Group (2006) Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone 39:159–173

    Article  PubMed  Google Scholar 

  19. Boot AM, De Ridder MAJ, Pols HAP, Krenning EP, De Muinck Keizer-Schrama SMPF (1997) Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab 82:57–62

    Article  PubMed  CAS  Google Scholar 

  20. American Association of Oral and Maxillofacial Surgeons (2007) Position paper on bisphosphonate-related osteonecrosis of the jaws. J Oral Maxillofac Surg 65:369–376

    Article  Google Scholar 

  21. Khosla S, Burr D, Cauley J, Dempster DW, Ebeling PR, Felsenberg D, Gagel RF, Gilsanz V, Guise T, Koka S, McCauley LK, McGowan J, McKee MD, Mohla S, Pendrys DG, Raisz LG, Ruggiero SL, Shafer DM, Shum L, Silverman SL, Van Poznak CH, Watts N, Woo SB, Shane E, American Society for Bone and Mineral Research (2007) Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 22:1479–1491

    Article  PubMed  Google Scholar 

  22. Cole TJ (1990) The LMS method for constructing normalized growth standards. Eur J Clin Nutr 44:45–60

    PubMed  CAS  Google Scholar 

  23. Cole TJ, Green PJ (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11:1305–1319

    Article  PubMed  CAS  Google Scholar 

  24. Njeh CF, Richards A, Boivin CM, Hans D, Fuerst T, Genant HK (1999) Factors influencing the speed of sound through the proximal phalanges. J Clin Densitom 2:241–249

    Article  PubMed  CAS  Google Scholar 

  25. Cadossi R, Canè V (1996) Pathways of transmission of ultrasound energy through the distal metaphysis of the second phalanx of pigs: an in vitro study. Osteoporos Int 6:196–206

    Article  PubMed  CAS  Google Scholar 

  26. Barkmann R, Rohrschneider W, Vierling M, Troger J, De Terlizzi F, Cadossi R, Heller M, Glüer CC (2002) German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges. Osteoporos Int 13:55–61

    Article  PubMed  CAS  Google Scholar 

  27. Kroger H, Kotaniemi A, Vainio P, Alhava E (1992) Bone densitometry of the spine and femur in children by dual-energy X-ray absorptiometry. Bone Miner 17:75–85

    Article  PubMed  CAS  Google Scholar 

  28. Kroger H, Vainio P, Nieminen J, Kotaniemi A (1995) Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone 17:157–159

    Article  PubMed  CAS  Google Scholar 

  29. Baroncelli GI, Bertelloni S, Ceccarelli C, Saggese G (1998) Measurement of volumetric bone mineral density accurately determines degree of lumbar undermineralization in children with growth hormone deficiency. J Clin Endocrinol Metab 83:3150–3154

    Article  PubMed  CAS  Google Scholar 

  30. Landin LA (1983) Fracture patterns in children. Acta Orthop Scand (Suppl 202) 54:1–109

    Google Scholar 

  31. Płudowski P, Lebiedowski M, Olszaniecka M, Marowska J, Matusik H, Lorenc RS (2006) Idiopathic juvenile osteoporosis: an analysis of the muscle-bone relationship. Osteoporos Int 17:1681–1690

    Article  PubMed  Google Scholar 

  32. Rizzoli R, Bianchi ML, Garabédian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46:294–305

    Article  PubMed  Google Scholar 

  33. Wuster C, Albanese C, De Aloysio D, Duboeuf F, Gambacciani M, Gonnelli S, Glüer CC, Hans D, Joly J, Reginster JY, De Terlizzi F, Cadossi R, The Phalangeal Osteosonogrammetry Study Group (2000) Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. J Bone Miner Res 15:1603–1614

    Article  PubMed  CAS  Google Scholar 

  34. Montagnani A, Gonnelli S, Cepollaro C, Mangeri M, Monaco R, Bruni D, Gennari C (2000) Quantitative ultrasound at the phalanges in healthy Italian men. Osteoporos Int 11:499–504

    Article  PubMed  CAS  Google Scholar 

  35. Speiser PW, Clarson CL, Eugster EA, Kemp SF, Radovick S, Rogol AD, Wilson TA, LWPES Pharmacy and Therapeutic Committee (2005) Bisphosphonate treatment of pediatric bone disease. Pediatr Endocrinol Rev 3:87–96

    PubMed  Google Scholar 

  36. Smith R (1980) Idiopathic osteoporosis in the young. J Bone Joint Surg 62B:417–427

    Google Scholar 

  37. Evans RA, Dunstan CR, Hills E (1983) Bone metabolism in idiopathic juvenile osteoporosis: a case report. Calcif Tissue Int 35:5–8

    Article  PubMed  CAS  Google Scholar 

  38. Rauch F, Travers R, Norman ME, Taylor A, Parfitt AM, Glorieux FH (2000) Deficient bone formation in idiopathic juvenile osteoporosis: a histomorphometric study of cancellous iliac bone. J Bone Miner Res 15:957–963

    Article  PubMed  CAS  Google Scholar 

  39. Rauch F, Travers R, Norman ME, Taylor A, Parfitt AM, Glorieux FH (2002) The bone formation defect in idiopathic juvenile osteoporosis is surface-specific. Bone 31:85–89

    Article  PubMed  CAS  Google Scholar 

  40. Rogers MJ, Crockett JC, Coxon FP, Mönkkönen J (2011) Biochemical and molecular mechanisms of action of bisphosphonates. Bone 49:34–41

    Article  PubMed  CAS  Google Scholar 

  41. Bellido T, Plotkin LI (2011) Novel actions of bisphosphonates in bone: preservation of osteoblast and osteocyte viability. Bone 49:50–55

    Article  PubMed  CAS  Google Scholar 

  42. Al Muderis M, Azzopardi T, Cundy P (2007) Zebra lines of pamidronate therapy in children. J Bone Joint Surg Am 89:1511–1516

    Article  PubMed  CAS  Google Scholar 

  43. Rauch F, Travers R, Munns C, Glorieux FH (2004) Sclerotic metaphyseal lines in a child treated with pamidronate: histomorphometric analysis. J Bone Miner Res 19:1191–1193

    Article  PubMed  Google Scholar 

  44. Chahine C, Cheung MS, Head TW, Schwartz S, Glorieux FH, Rauch F (2008) Tooth extraction socket healing in pediatric patients treated with intravenous pamidronate. J Pediatr 153:719–720

    Article  PubMed  CAS  Google Scholar 

  45. Maines E, Monti E, Doro F, Morandi G, Cavarzere P, Antoniazzi F (2012) Children and adolescents treated with neridronate for osteogenesis imperfecta show no evidence of any osteonecrosis of the jaw. J Bone Miner Metab 30:434–438

    Article  PubMed  CAS  Google Scholar 

  46. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the parents of all the patients for their consent and help to perform the study.

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero I. Baroncelli.

About this article

Cite this article

Baroncelli, G.I., Vierucci, F., Bertelloni, S. et al. Pamidronate treatment stimulates the onset of recovery phase reducing fracture rate and skeletal deformities in patients with idiopathic juvenile osteoporosis: comparison with untreated patients. J Bone Miner Metab 31, 533–543 (2013). https://doi.org/10.1007/s00774-013-0438-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-013-0438-9

Keywords

Navigation