Skip to main content

Advertisement

Log in

IL-23/IL-17 axis in spondyloarthritis-bench to bedside

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Cytokines play a critical role in the pathogenesis of psoriatic arthritis, ankylosing spondylitis, and other types of spondyloarthritis (SpA). Besides IFN-γ and TNF-α; IL-23/IL-17 cytokines play a dominant role in the inflammatory and proliferative cascades of SpA. Recently, in a series of elegant experiments using mouse models and human tissues, it has been demonstrated that IL-23-induced Th17 cytokines (IL-17 and IL-22) can contribute to following pathologic events associated with SpA: development of psoriatic plaque, pannus formation in the joint, joint erosion, and new bone formation. In this review article, we have discussed the contributing role of the IL-23/IL-17 cytokine axis in the pathogenesis of PsA and AS. IL-23/IL-17-targeted therapies are very promising for SpA, and we have provided an outline about usefulness of these new groups of biologics in SpA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gladman DD, Farwell VT, Pellett F, Schentag C, Raham P (2003) HLA is a candidate region for psoriatic arthritis. Evidence for excessive HLA sharing in sibling pairs. Hum Immunol 64(9):887–889

    Article  CAS  PubMed  Google Scholar 

  2. Brown MA, Kenna T, Wordsworth BP (2016) Genetics of ankylosing spondylitis-insights into pathogenesis. Nat Rev Rheumatol 12(2):81–91

    Article  CAS  PubMed  Google Scholar 

  3. Raychaudhuri SP, Raychaudhuri SK, Genovese MC (2012) IL-17 receptor and its functional significance in psoriatic arthritis. Mol Cell Biochem 359(1–2):419–429

    Article  CAS  PubMed  Google Scholar 

  4. Raychaudhuri SK, Saxena A, Raychaudhuri SP (2015) Role of IL-17 in the pathogenesis of psoriatic arthritis and axial spondyloarthritis. Clin Rheumatol 34(6):1019–1023

    Article  PubMed  Google Scholar 

  5. van den Berg WB, McInnes IB (2013) Th17 cells and IL-17 a—focus on immunopathogenesis and immunotherapeutics. Semin Arthritis Rheum 43:158–170

    Article  PubMed  Google Scholar 

  6. Dardalhon V, Korn T, Kuchroo VK, Anderson AC (2008) Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun 31:252–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4 effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  CAS  PubMed  Google Scholar 

  8. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor ROR λt directs the differentiation program of proinflammatory IL-17-T helper cells. Cell 126:1121–1133

    Article  CAS  PubMed  Google Scholar 

  9. Miossec P, Korn T, Kuchroo VK (2009) Interleukin-17 and type 17 helper T cells. N Engl J Med 361:888–898

    Article  CAS  PubMed  Google Scholar 

  10. Zenewicz LA, Flavell RA (2011) Recent advances in IL-22 biology. Int Immunol 23:159–163

    Article  CAS  PubMed  Google Scholar 

  11. Tesmer LA, Lundy SK, Sarkar S, Fox DA (2008) Th17 cells in human disease. Immunol Rev 223:87–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuestner RE, Taft DW, Haran A, Brandt CS, Brender T, Lum K et al (2007) Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 179(8):5462–5473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang SC, Long AJ, Bennett F, Whitters MJ, Karim R, Collins M et al (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 179(11):7791–7799

    Article  CAS  PubMed  Google Scholar 

  14. Hymowitz SG, Filvaroff EH, Yin J, Lee J, Cai L, Risser P et al (2001) IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J 20(19):5332–5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yao Z, Spriggs MK, Derry JM, Strockbine L, Park LS, Vanden Bos T et al (1997) Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine 9(11):794–800

    Article  CAS  PubMed  Google Scholar 

  16. Ely LK, Fischer S, Garcia KC (2009) Structural basis of receptor sharing by interleukin 17 cytokines. Nat Immunol 10(12):1245–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mease PJ (2015) Inhibition of interleukin-17, interleukin-23 and the TH17 cell pathway in the treatment of psoriatic arthritis and psoriasis. Curr Opin Rheumatol 27(2):127–133

    Article  CAS  PubMed  Google Scholar 

  18. Colbert RA, Tran TM, Layh-Schmitt G (2014) HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol 57(1):44–51

    Article  CAS  PubMed  Google Scholar 

  19. Australo-Anglo-American Spondyloarthritis Consortium (TASC), Reveille JD, Sims AM, Danoy P, Evans DM, Leo P, Pointon JJ et al (2010) Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet 42(2):123–127

    Article  Google Scholar 

  20. Mei Y, Pan F, Gao J, Ge R, Duan Z, Zeng Z, Liao F, Xia G, Wang S, Xu S, Xu J, Zhang L, Ye D (2011) Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol 30:269–273

    Article  PubMed  Google Scholar 

  21. Zeng L, Lindstrom MJ, Smith JA (2011) Ankylosing spondylitis macrophage production of higher levels of interleukin-23 in response to lipopolysaccharide. Arthritis Rheum 63(12):3807–3817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Appel H, Maier R, Wu P, Scheer R, Hempfing A, Kayser R, Thiel A, Radbruch A, Loddenkemper C, Sieper J (2011) Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther 13:R95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh AK, Misra R, Aggarwal A (2011) Th17 associated cytokines in patients with reactive arthritis/undifferentiated spondylarthropathy. Clin Rheumatol 30:771–776

    Article  PubMed  Google Scholar 

  24. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421(6924):744–748

    Article  CAS  PubMed  Google Scholar 

  25. Sherlock JP, Joyce-Shaikh B, Turner SP et al (2012) IL-23 induces spondyloarthropathy by acting on ROR-gammatþ CD3þCD4-CD8- entheseal resident T cells. Nat Med 18:1069–1076

    Article  CAS  PubMed  Google Scholar 

  26. Mitra A, Raychaudhuri SK, Raychaudhuri SP (2012) Functional role of IL-22 in psoriatic arthritis. Arthritis Res Ther 14(2):R65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O'Rielly DD, Rahman P (2015) Genetic, epigenetic and pharmacogenetic aspects of psoriasis and psoriatic arthritis. Rheum Dis Clin N Am 41(4):623–642

    Article  Google Scholar 

  28. Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9(8):556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ge D, You Z (2008) Expression of interleukin-17RC protein in normal human tissues. Int Arch Med 1(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schwarzenberger P et al (1998) IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines. J Immunol 161(11):6383–6389

    CAS  PubMed  Google Scholar 

  31. Linden A, Laan M, Anderson GP (2005) Neutrophils, interleukin-17A and lung disease. Eur Respir J 25(1):159–172

    Article  CAS  PubMed  Google Scholar 

  32. Fossiez F et al (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 183(6):2593–2603

    Article  CAS  PubMed  Google Scholar 

  33. Saxena A, Raychaudhuri SK, Raychaudhuri SP (2011) Interleukin-17-induced proliferation of fibroblast-like synovial cells is mTOR dependent. Arthritis Rheum 63(5):1465–1466

    Article  CAS  PubMed  Google Scholar 

  34. Numasaki M, Fukushi J, Ono M et al (2003) Interleukin-17 promotes angiogenesis and tumor growth. Blood 101(7):2620–2627

    Article  CAS  PubMed  Google Scholar 

  35. Toh ML et al (2010) Role of interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression. PLoS One 5(10):e13416

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hartupee J, Liu C, Novotny M, Li X, Hamilton T (2007) IL-17 enhances chemokine gene expression through mRNA stabilization. J Immunol 179(6):4135–4141

    Article  CAS  PubMed  Google Scholar 

  37. Appel H, Kuhne M, Spiekermann S, Ebhardt H, Grozdanovic Z, Köhler D, Dreimann M, Hempfing A, Rudwaleit M, Stein H, Metz-Stavenhagen P, Sieper J, Loddenkemper C (2006) Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum 54(9):2845–2851

    Article  PubMed  Google Scholar 

  38. Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM (2003) Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 111(6):821–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koenders MI, Lubberts E, Oppers-Walgreen B, van den Bersselaar L, Helsen MM, Di Padova FE et al (2005) Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am J Pathol 167(1):141–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103(9):1345–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adamopoulos IE, Suzuki E, Chao CC, Gorman D, Adda S, Maverakis E et al (2015) IL-17A gene transfer induces bone loss and epidermal hyperplasia associated with psoriatic arthritis. Ann Rheum Dis 74(6):1284–1292

    Article  PubMed  PubMed Central  Google Scholar 

  42. Langley RG, Elewski BE, Lebwohl M et al (2014) Secukinumab in plaque psoriasis—results of two phase 3 trials. N Engl J Med 371:326–338

    Article  PubMed  Google Scholar 

  43. Mease PJMI, Kirkham B, Kavanaugh A et al (2014) Secukinumab, a human anti–interleukin-17A monoclonal antibody, improves active psoriatic arthritis and inhibits radiographic progression: efficacy and safety data from a phase 3 randomized, multicenter, double-blind, placebo-controlled study. Arthritis Rheumatol 66:3529–3540

    Article  Google Scholar 

  44. Baeten D, Baraliakos X, Braun J et al (2013) Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet 382:1705–1713

    Article  CAS  PubMed  Google Scholar 

  45. Leonardi C, Matheson R, Zachariae C et al (2012) Anti-interleukin-17monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med 366:1190–1199

    Article  CAS  PubMed  Google Scholar 

  46. Papp KA, Langley RG, Lebwohl M et al (2008) Efficacy and safety of ustekinumab, a human interleukin- 12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371:1675–1684

    Article  CAS  PubMed  Google Scholar 

  47. Ritchlin C, Rahman P, Kavanaugh A et al (2014) Efficacy and safety of the anti-IL-12/23 p40monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann Rheum Dis 73:990–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sofen H, Smith S, Matheson RT et al (2014) Guselkumab (an IL-23-specific mAb) demonstrates clinical andmolecular response in patients with moderate-to-severe psoriasis. J Allergy Clin Immunol 133:1032–1040

    Article  CAS  PubMed  Google Scholar 

  49. Kopp T, Riedl E, Bangert C et al (2015) Clinical improvement in psoriasis with specific targeting of interleukin-23. Nature 521:222–226

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siba P. Raychaudhuri.

Ethics declarations

Disclosures

This is a VA - engaged project. Contents do not necessarily represent the views of the Department of Veterans Affairs or the United States Government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raychaudhuri, S.P., Raychaudhuri, S.K. IL-23/IL-17 axis in spondyloarthritis-bench to bedside. Clin Rheumatol 35, 1437–1441 (2016). https://doi.org/10.1007/s10067-016-3263-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-016-3263-4

Keywords

Navigation