Skip to main content

Advertisement

Log in

Automatic Prospective Registration of High-Resolution Trabecular Bone Images of the Tibia

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Magnetic Resonance Imaging (MRI) longitudinal studies conducted to assess changes in tibia bone quality impose strict requirements on the reproducibility of the prescribed region acquired. Registration, the process of aligning two images, is commonly performed on the images after acquisition. However, techniques to improve image registration precision by adjusting scanning parameters prospectively, prior to image acquisition, would be preferred. We have adapted an automatic prospective mutual information based registration algorithm to a MRI longitudinal study of trabecular bone of the tibia and compared it to a post-scan manual registration. Qualitatively, image alignment due to the prospective registration is shown in 2D subtraction images and 3D surface renderings. Quantitatively, the registration performance is demonstrated by calculating the sum of the squares of the subtraction images. Results show that the sum of the squares is lower for the follow up images with prospective registration by an average of 19.37% ± 0.07 compared to follow up images with post-scan manual registration. Our study found no significant difference between the trabecular bone structure parameters calculated from the post-scan manual registration and the prospective registration images (p > 0.05). All coefficient of variation values for all trabecular bone structure parameters were within a 2–4.5% range which are within values previously reported in the literature. Results suggest that this algorithm is robust enough to be used in different musculoskeletal imaging applications including the hip as well as the tibia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Atkinson K. An Introduction to Numerical Analysis. Chichester: Wiley; 1989

    Google Scholar 

  2. Bangerter N. K., Hargreaves B. A., Vasanawala S. S., Pauly J. M., Gold G. E., Nishimura D. G. Analysis of multiple-acquisition SSFP. Magn. Reson. Med. 2004;51(5):1038–1047

    Article  PubMed  Google Scholar 

  3. Bankman, I. N. Handbook of Medical Imaging: Processing and Analysis San Diego. CA: Academic, pp. 542–543, 2000

  4. Benner, T., J. J. Wisco, and A. J. van der Kouwe, et al. Comparison of manual and automatic section positioning of brain MR images. Radiology 239:246–254, 2006

    Google Scholar 

  5. Carpenter, D., R. Krug, S. Banerjee, and S. Majumdar. Analyzing Trabecular Bone Structure in the Proximal Femur with High-Resolution Parallel Magnetic Resonance Imaging. International Bone Densitometry Workshop, Kyoto, Japan 2006

  6. Chu, W.-J., C. Pan, J. W. Pan, and H. P. Hethereinton. Reproducibility of 1H Spectroscopic Imaging of the Human Hippocampus. In: Proceedings of the 12th International Society of Magnetic Resonance Medicine 2004

  7. Ciarelli M. J., Goldstein S. A., Kuhn J. L., Cody D. D., Brown M. B. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J. Orthop. Res. 1991;9(5):674–682

    Article  PubMed  CAS  Google Scholar 

  8. Collignon A., Maes F., Vandermeulen D., Marchal G., Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 1997;16(2):187–198

    Article  PubMed  Google Scholar 

  9. Gedat E., Braun J., Sack I., Bernarding J. Prospective registration of human head magnetic resonance images for reproducible slice positioning using localizer images. J. Magn. Reson. Imaging 2004;20(4):581–587

    Article  PubMed  Google Scholar 

  10. Glantz S. A. Primer of Bio-Statistics. United States of America: McGraw-Hill Companies, Inc.; 1997

    Google Scholar 

  11. Gluer C. C., Blake G., Lu Y., Blunt B. A., Jergas M., Genant H. K. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos. Int. 1995;5(4):262–270

    Article  PubMed  CAS  Google Scholar 

  12. Gomberg B. R., Wehrli F. W., Vasilic B., et al. Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 2004;35(1):266–276

    Article  PubMed  CAS  Google Scholar 

  13. Hancu I., Blezek D. J., Dumoulin M. C. Automatic repositioning of single voxels in longitudinal 1H MRS studies. NMR Biomed. 2005;18(6):352–361

    Article  PubMed  CAS  Google Scholar 

  14. Hartmann S. L., Dawant B. M., Parks M. H., Schlack H., Martin P. R. Image-guided MR spectroscopy volume of interest localization for longitudinal studies. Comput. Med. Imaging Graph 1998;22(6):453–461

    Article  PubMed  CAS  Google Scholar 

  15. Itti L., Chang L., Ernst T. Automatic scan prescription for brain MRI. Magn. Reson. Med. 2001;45(3):486–494

    Article  PubMed  CAS  Google Scholar 

  16. Kleerekoper M., Villanueva A. R., Stanciu J., Rao D. S., Parfitt A. M. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif. Tissue Int. 1985;37(6):594–597

    Article  PubMed  CAS  Google Scholar 

  17. Kullback S., Leibler R. A. On information and sufficiency. Ann. Math. Stat. 1951;22(1):79–86

    Google Scholar 

  18. Lehmann T. M., Gonner C., Spitzer K. Survey: interpolation methods in medical image processing. IEEE Trans. Med. Imaging 1999;18(11):1049–1075

    Article  PubMed  CAS  Google Scholar 

  19. Magland, J., B. Vasilic, W. Lin, and F. W. Wehrli. Automatic 3D Registration of Trabecular Bone Images Using a Collection of Regional 2D Registrations. In: Proceedings of the 14th International Society of Magnetic Resonance Medicine 2006

  20. Majumdar S., Genant H. K. Assessment of trabecular structure using high resolution magnetic resonance imaging. Stud. Health Technol. Inform. 1997;40:81–96

    PubMed  CAS  Google Scholar 

  21. Majumdar S., Genant H. K., Grampp S., et al. Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J. Bone Miner Res. 1997;12(1):111–118

    Article  PubMed  CAS  Google Scholar 

  22. Newitt D. C., Van Rietbergen B., Majumdar S. Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos. Int. 2002;13:278–287

    Article  PubMed  CAS  Google Scholar 

  23. Pluim J. P., Maintz J. B., Viergever M. A. Mutual-information-based registration of medical images: a survey. IEEE Trans. Med. Imaging 2003;22(8):986–1004

    Article  PubMed  Google Scholar 

  24. Rizzo, G., P. Pasquali, and M. C. Gilardi, et al. Multimodality biomedical image integration: use of a cross-correlation technique.; pp. 219–220, 1991

  25. Viola P., Wells W. M. Alignment by maximization of mutual information. Int. J. Comp. Vis. 1997;24(2):137–154

    Article  Google Scholar 

  26. Wehrli F. W., Hwang S. N., Ma J., Song H. K., Ford J. C., Haddad J. G. Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 1998;206:347–357

    PubMed  CAS  Google Scholar 

  27. Woods R. P., Cherry S. R., Mazziotta J. C. Rapid automated algorithm for aligning and reslicing PET images. J. Comput. Assist. Tomogr. 1992;16:620–633

    Article  PubMed  CAS  Google Scholar 

  28. Woods R. P., Grafton S. T., Holmes C. J., Cherry S. R., Mazziotta J. C. Automated image registration: I. General methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr. 1998;22:141–154

    Google Scholar 

  29. van der Kouwe A. J., Benner T., Fischl B., et al. On-line automatic slice positioning for brain MR imaging. Neuroimage 2005;27(1):220–230

    Google Scholar 

Download references

Acknowledgments

This work is funded by NIH grant award program number ROI-AR49701. The authors thank David Newitt and Ben Hyun for their insight on trabecular bone analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Blumenfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumenfeld, J., Carballido-Gamio, J., Krug, R. et al. Automatic Prospective Registration of High-Resolution Trabecular Bone Images of the Tibia. Ann Biomed Eng 35, 1924–1931 (2007). https://doi.org/10.1007/s10439-007-9365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9365-z

Keywords

Navigation