Skip to main content
Log in

Simultaneous Measurement of Anisotropic Solute Diffusivity and Binding Reaction Rates in Biological Tissues by FRAP

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Several solutes (e.g., growth factors, cationic solutes, etc.) can reversibly bind to the extracellular matrix (ECM) of biological tissues. Binding interactions have significant implications on transport of such solutes through the ECM. In order to fully delineate transport phenomena in biological tissues, knowledge of binding kinetics is crucial. In this study, a new method for the simultaneous determination of solute anisotropic diffusivity and binding reaction rates was presented. The new technique was solely based on Fourier analysis of fluorescence recovery after photobleaching (FRAP) images. Computer-simulated FRAP tests were used to assess the sensitivity and the robustness of the method to experimental parameters, such as anisotropic solute diffusivity and rates of binding reaction. The new method was applied to the determination of diffusivity and binding rates of 5-dodecanoylaminofluorescein (DAF) in bovine coccygeal annulus fibrosus (AF). Our findings indicate that DAF reversibly binds to the ECM of AF. In addition, it was found that DAF diffusion in AF is anisotropic. The results were in agreement with those reported in previous studies. This study provides a new tool for the simultaneous determination of solute anisotropic diffusion tensor and rates of binding reaction that can be used to investigate diffusive–reactive transport in biological tissues and tissue engineered constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Arkill, K. P., and C. P. Winlove. Solute transport in deep and calcified zones of articular cartilage. Osteoarthr. Cartil. 13:708–714, 2008.

    Article  Google Scholar 

  2. Berk, D. A., F. Yuan, M. Leunig, and R. K. Jain. Fluorescence photobleaching with spatial Fourier analysis: measurement of diffusion in light-scattering media. Biophys. J. 65:2428–2436, 1993.

    Article  CAS  PubMed  Google Scholar 

  3. Bhakta, N. R., A. M. Garcia, E. H. Frank, A. J. Grodzinsky, and T. I. Morales. The insulin-like growth factors (IGFs) I and II bind to articular cartilage via the IGF-binding proteins. J. Biol. Chem. 275:5860–5866, 2000.

    Article  CAS  PubMed  Google Scholar 

  4. Braga, J., J. G. McNally, and M. Carmo-Fonseca. A reaction-diffusion model to study RNA motion by quantitative fluorescence recovery after photobleaching. Biophys. J. 92:2694–2703, 2007.

    Article  CAS  PubMed  Google Scholar 

  5. Bulinski, J. C., D. J. Odde, B. J. Howell, T. D. Salmon, and C. M. Waterman-Storer. Rapid dynamics of the microtube binding of ensconsin in vivo. J. Cell Sci. 114:3885–3897, 2001.

    CAS  PubMed  Google Scholar 

  6. Burstein, D., M. L. Gray, A. L. Hartman, R. Gipe, and B. D. Foy. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J. Orthop. Res. 11:465–478, 1993.

    Article  CAS  PubMed  Google Scholar 

  7. Carrero, G., D. McDonald, E. Crawford, G. de Vries, and M. J. Hendzel. Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29:14–28, 2003.

    Article  CAS  PubMed  Google Scholar 

  8. Carrero, G., E. Crawford, M. J. Hendzel, and G. de Vries. Characterizing fluorescence recovery curves for nuclear proteins undergoing binding events. Bull. Math. Biol. 66:1515–1545, 2004.

    Article  CAS  PubMed  Google Scholar 

  9. Chiu, E. J., D. C. Newitt, M. R. Segal, S. S. Hu, J. C. Lotz, and S. Majumdar. Magnetic resonance imaging measurement of relaxation and water diffusion in the human lumbar intervertebral disc under compression in vitro. Spine 26:E437–E444, 2001.

    Article  CAS  PubMed  Google Scholar 

  10. Coscoy, S., F. Waharte, A. Gautreau, M. Martin, D. Louverd, P. Mangeat, M. Arpin, and F. Amblard. Molecular analysis of microscopic ezrin dynamics by two-photon FRAP. Proc. Natl Acad. Sci. 99:12813–12818, 2002.

    Article  CAS  PubMed  Google Scholar 

  11. Crank, J. Diffusion and chemical reaction. In: The Mathematics of Diffusion. New York: Oxford University Press Inc., 1975, pp. 338–340.

  12. Diamant, B., J. Karlsson, and A. Nachemeson. Correlation between lactate levels and pH in discs of patients with lumbar rhizopathies. Experientia 24:1195–1196, 1968.

    Article  CAS  PubMed  Google Scholar 

  13. Dundr, M., U. Hoffmann-Rohrer, Q. Hu, I. Grummt, L. I. Rothblum, R. D. Phair, and T. Misteli. A kinetic framework for a mammalian RNA polymerase in vivo. Science 298:1623–1626, 2002.

    Article  CAS  PubMed  Google Scholar 

  14. Fung, Y. C. Quasi-linear viscoelasticity of soft tissues. In: Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag New York, Inc., 1993, pp. 279–280.

  15. Garcia, A. M., N. Szasz, S. B. Trippel, T. I. Morales, A. J. Grodzinsky, and E. H. Frank. Transport and binding of insulin-like growth factor I through articular cartilage. Arch. Biochem. Biophys. 415:69–79, 2003.

    Article  CAS  PubMed  Google Scholar 

  16. Hsu, E. W., and L. A. Setton. Diffusion tensor microscopy of the intervertebral disc anulus fibrosus. Magn. Reson. Med. 41:992–999, 1999.

    Article  CAS  PubMed  Google Scholar 

  17. Iatridis, J. C., and I. ap Gwynn. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. J. Biomech. 37:1165–1175, 2004.

    Article  PubMed  Google Scholar 

  18. Inagawa, K., T. Oohashi, K. Nishida, J. Minaguchi, T. Tsubakishita, K. O. Yaykasli, A. Ohtsuka, T. Ozaki, T. Moriguchi, and Y. Ninomiya. Optical imaging of mouse articular cartilage using the glycosaminoglycans binding property of fluorescent-labeled octaarginine. Osteoarthr. Cartil. 17:1209–1218, 2009.

    Article  CAS  PubMed  Google Scholar 

  19. Jackson, A. R., and W. Y. Gu. Transport properties of cartilaginous tissues. Curr. Rheumatol. Rev. 5:40–50, 2009.

    Article  CAS  PubMed  Google Scholar 

  20. Jackson, A. R., H. Yao, M. D. Brown, and W. Y. Gu. Anisotropic ion diffusivity in intervertebral disc: an electrical conductivity approach. Spine 31:2783–2789, 2006.

    Article  PubMed  Google Scholar 

  21. Jackson, A. R., T. Y. Yuan, C. Y. Huang, F. Travascio, and W. Y. Gu. Effect of compression and anisotropy on the diffusion of glucose in annulus fibrosus. Spine 33:1–7, 2008.

    Article  PubMed  Google Scholar 

  22. Kang, M., and A. K. Kenworthy. A closed-form analytic expression for FRAP formula for the binding diffusion model. Biophys. J. 95:L13–L15, 2008.

    Article  CAS  PubMed  Google Scholar 

  23. Kaufman, E. N., and R. K. Jain. Quantification of transport and binding parameters using fluorescence recovery after photobleaching. Biophys. J. 58:873–885, 1990.

    Article  CAS  PubMed  Google Scholar 

  24. Kaufman, E. N., and R. K. Jain. Measurement of mass transport and reaction parameters in bulk solution using photobleaching. Biophys. J. 60:596–610, 1991.

    Article  CAS  PubMed  Google Scholar 

  25. Kimura, H., K. Sugaya, and P. R. Cook. The transcription cycle of RNA polymerase II in living cells. J. Cell Biol. 159:457–459, 2002.

    Article  Google Scholar 

  26. Leddy, H. A., and F. Guilak. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann. Biomed. Eng. 31:753–760, 2003.

    Article  PubMed  Google Scholar 

  27. Leddy, H. A., and F. Guilak. Site-specific effects of compression on macromolecular diffusion in articular cartilage. Biophys. J. 95:4890–4895, 2008.

    Article  CAS  PubMed  Google Scholar 

  28. Leddy, H. A., H. A. Awad, and F. Guilak. Molecular diffusion in tissue-engineered cartilage constructs: effects of scaffold material, time, and culture conditions. J. Biomed. Mater. Res. B Appl. Biomater. 70:397–406, 2004.

    Article  PubMed  Google Scholar 

  29. Leddy, H. A., M. A. Haider, and F. Guilak. Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching. Biophys. J. 91:311–316, 2006.

    Article  CAS  PubMed  Google Scholar 

  30. Lele, T. P., and D. E. Ingber. A mathematical model to determine molecular kinetic rate constants under non-steady state conditions using fluorescence recovery after photobleaching (FRAP). Biophys. Chem. 120:32–35, 2006.

    Article  CAS  PubMed  Google Scholar 

  31. Lippincott-Schwartz, J., N. Altan-Bonnet, and G. H. Patterson. Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol. Supplement:S7–S13, 2003.

  32. Maroudas, A. Distribution and diffusion of solutes in articular cartilage. Biophys. J. 10:365–379, 1970.

    Article  CAS  PubMed  Google Scholar 

  33. Maroudas, A. Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport. Biorheology 12:233–248, 1975.

    CAS  PubMed  Google Scholar 

  34. Meyvis, T. K. L., S. C. De Smedt, P. Van Oostveldt, and J. Demeester. Fluorescence recovery after photobleaching: a versatile tool for mobility and interaction measurements in pharmaceutical research. Pharm. Res. 16:1153–1162, 1999.

    Article  CAS  PubMed  Google Scholar 

  35. Ohshima, H., H. Tsuji, N. Hiarano, H. Ishihara, Y. Katoh, and H. Yamada. Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load. Spine 14:1234–1244, 1989.

    Article  CAS  PubMed  Google Scholar 

  36. Perry, R. H. Mathematical tables and mathematics. In: Engineering Manual, edited by R. H. Perry, D. W. Green, and J. O. Maloney. New York: McGraw Hill, Inc., 1976, pp. 78–80.

    Google Scholar 

  37. Quinn, T. M., P. Kocian, and J. J. Meister. Static compression is associated with decreased diffusivity of dextrans in cartilage explants. Arch. Biochem. Biophys. 384:327–334, 2000.

    Article  CAS  PubMed  Google Scholar 

  38. Quinn, T. M., V. Morel, and J. J. Meister. Static compression of articular cartilage can reduce solute diffusivity and partitioning: implications for the chondrocyte biological response. J. Biomech. 34:1463–1469, 2001.

    Article  CAS  PubMed  Google Scholar 

  39. Reits, E. A. J., and J. J. Neefies. From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3:E145–E147, 2001.

    Article  CAS  PubMed  Google Scholar 

  40. Schneiderman, R., E. Snir, O. Popper, J. Hiss, H. Stein, and A. Maroudas. Insulin-like growth factor-I and its complexes in normal human articular cartilage: studies of partition and diffusion. Arch. Biochem. Biophys. 324(1):159–172, 1995.

    Article  CAS  PubMed  Google Scholar 

  41. Sprague, B. L., and J. G. McNally. FRAP analysis of binding: proper and fitting. Trends Cell Biol. 15:84–91, 2005.

    Article  CAS  PubMed  Google Scholar 

  42. Sprague, B. L., R. L. Pego, D. A. Stavreva, and J. G. McNally. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 86:3473–3495, 2004.

    Article  CAS  PubMed  Google Scholar 

  43. Torzilli, P. A., T. C. Adams, and R. J. Mis. Transient solute diffusion in articular cartilage. J. Biomech. 20:203–214, 1987.

    Article  CAS  PubMed  Google Scholar 

  44. Torzilli, P. A., D. A. Grande, and J. M. Arduino. Diffusive properties of immature articular cartilage. J. Biomed. Mater. Res. 40:132–138, 1998.

    Article  CAS  PubMed  Google Scholar 

  45. Travascio, F., and W. Y. Gu. Anisotropic diffusive transport in annulus fibrosus: experimental determination of the diffusion tensor by FRAP technique. Ann. Biomed. Eng. 35:1739–1748, 2007.

    Article  PubMed  Google Scholar 

  46. Travascio, F., A. R. Jackson, M. D. Brown, and W. Y. Gu. Relationship between solute transport properties and tissue morphology in human annulus fibrosus. J. Orthop. Res. 27:1625–1630, 2009.

    Article  PubMed  Google Scholar 

  47. Travascio, F., W. Zhao, and W. Y. Gu. Characterization of anisotropic diffusion tensor of solute in tissue by video-FRAP imaging technique. Ann. Biomed. Eng. 37:813–823, 2009.

    Article  PubMed  Google Scholar 

  48. Tsay, T. T., and K. Jacobson. Spatial Fourier analysis of video photobleaching measurements. Principles and optimization. Biophys. J. 60:360–368, 1991.

    Article  CAS  PubMed  Google Scholar 

  49. Tsibidis, G. D. Quantitative interpretation of binding reactions of rapidly diffusing species using fluorescence recovery after photobleaching. J. Microscopy 233:384–390, 2009.

    Article  CAS  Google Scholar 

  50. Urban, J. P. G., S. Holms, A. Maroudas, and A. Nachemson. Nutrition of the intervertebral disc: an in vivo study of solute transport. Clin. Orthop. 129:101–114, 1977.

    CAS  PubMed  Google Scholar 

  51. Urban, J. P., S. Holm, and A. Maroudas. Diffusion of small solutes into the intervertebral disc: as in vivo study. Biorheology 15:203–221, 1978.

    CAS  PubMed  Google Scholar 

  52. Urban, J. P., S. Holm, A. Maroudas, and A. Nachemson. Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin. Orthop. 170:296–302, 1982.

    CAS  PubMed  Google Scholar 

  53. Urban, J. P., S. Smith, and J. C. Fairbank. Nutrition of the intervertebral disc. Spine 29:2700–2709, 2004.

    Article  PubMed  Google Scholar 

  54. Zhang, L., B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky. The effect of cyclic deformation and solute binding on solute transport in cartilage. Arch. Biochem. Biophys. 457:47–56, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the grants from the National Institute of Arthritis, Musculoskeletal and Skin Diseases (AR050609), and the National Institute of Biomedical Imaging and Bioengineering (EB008653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yong Gu.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Appendix

Appendix

Dimensionless Analysis of the Field Equations for Diffusive–reactive Transport

Now, for the sake of simplicity, the ideal case of isotropic diffusive–reactive fluorescence recovery is considered. The extension of this analysis to the more general case of anisotropic diffusion can be easily derived.

In the case of isotropic diffusive–reactive transport, recovery of fluorescence intensity within the images is controlled by four parameters: the diffusion coefficient D, the pseudo-rate of binding association \( k_{a}^{*} \), the rate of binding dissociation k d , and the initial diameter of the bleach spot (d). Let Da and R be two dimensionless numbers defined as42

$$ Da = {\frac{{d^{2} k_{a}^{*} }}{D}}, $$
(4a)
$$ R = {\frac{{k_{a}^{*} }}{{k_{d} }}}. $$
(4b)

The number Da represents the ratio of the diffusion time to the characteristic time of binding association, and, therefore, has the physical meaning of the Damkhöler number.36 The number R represents the ratio of the characteristic time of binding dissociation to that of binding association. Let d be the characteristic length and τ the characteristic time of the diffusive–reactive process, defined as

$$ \tau = {\frac{{d^{2} }}{D}}\left( {1 + R} \right). $$
(A1)

Equations (3a–b) can be rewritten in the following dimensionless form:

$$ {\frac{{\partial \bar{c}^{f} }}{{\partial \hat{t}}}} = \left( {1 + R} \right) \cdot \hat{\nabla }^{2} \bar{c}^{f} - {\frac{{\partial \bar{c}^{b} }}{{\partial \hat{t}}}}, $$
(A2a)
$$ {\frac{{\partial \bar{c}^{b} }}{{\partial \hat{t}}}} = (1 + R)Da \cdot \bar{c}^{f} - \left( {1 + \frac{1}{R}} \right)Da \cdot \bar{c}^{b} , $$
(A2b)

where \( \bar{c}^{f} \) and \( \bar{c}^{b} \) are the concentrations of free and bound solutes normalized by the total pre-bleach concentration of fluorescent solute; \( \hat{t} \)(defined as \( \hat{t} \) = t/τ) and \( \hat{\nabla }^{2} \) (defined as \( \hat{\nabla }^{2} \) = \( \nabla^{2} \)·d 2) are the dimensionless time and the dimensionless Laplacian operator, respectively. Eqs. (A2a–b) indicate that the two dimensionless numbers, Da and R, govern the diffusive–reactive fluorescence recovery.

Solution of the Diffusion–Reaction Equations in the Fourier Space

The system of Eqs. (3a–b) is transformed in the 2D Fourier space defined by the dimensionless frequencies (u, v):

$$ {\frac{{dC_{f} (u,v,t)}}{dt}} = - 4\pi^{2} {\frac{{(u^{2} + v^{2} )}}{{L^{2} }}}D(\xi )C_{f} (u,v,t) - k_{a}^{*} C_{f} (u,v,t) + k_{d} C_{b} (u,v,t) $$
(A3a)
$$ {\frac{{dC_{b} (u,v,t)}}{dt}} = k_{a}^{*} C_{f} (u,v,t) - k_{d} C_{b} (u,v,t) $$
(A3b)

where C f and C b are the 2D Fourier transforms of the concentrations of free and bound solutes, normalized with respect to the pre-bleach total concentration of solute (free + bound); L is the dimension of the video-FRAP image, corresponding to eight times the value of the initial diameter of the bleach spot (d) used in the experiments. The function D(ξ), defined as47

$$ D(\xi ) = D_{xx} \cos^{2} \xi + 2D_{xy} \cos \xi \sin \xi + D_{yy} \sin^{2} \xi , $$
(A4)

with

$$ \xi = \tan^{ - 1} \frac{v}{u}, $$
(A5)

includes the components of the 2D diffusion tensor D (i.e., D xx , D xy , and D yy ). Assuming that, before bleaching (t = 0), the system is at equilibrium (both dC f /dt and dC b /dt equal zero), from Eqs. (A3b) we have

$$ k_{a}^{*} C_{f} (u,v,0) = k_{d} C_{b} (u,v,0). $$
(A6)

Since C f (u, v, 0) + C b (u, v, 0) = 1, it follows that

$$ C_{f} (u,v,0) = {\frac{{k_{d} }}{{k_{a}^{*} + k_{d} }}}, $$
(A7a)
$$ C_{b} (u,v,0) = {\frac{{k_{a}^{*} }}{{k_{a}^{*} + k_{d} }}}. $$
(A7b)

Equations (A7a–b) represent the initial conditions for Eqs. (3a–b). Note that, in the Fourier space, the intensity of the fluorescence emission is proportional to the total concentration of the fluorescent solute (C = C f  + C b ) according to the following relationship2:

$$ {\frac{I(u,v,t)}{I(u,v,0)}} = {\frac{C(u,v,t)}{C(u,v,0)}}. $$
(A8)

Combining the solution of Eqs. (3a–b) with (A8), it follows that

$$ {\frac{I(u,v,t)}{I(u,v,0)}} = Ae^{{\lambda_{1} t}} + Be^{{\lambda_{2} t}} , $$
(A9)

where

$$ A = {\frac{{(\lambda_{2} - a - c)(\lambda_{1} - a + b)}}{{(b + c)(\lambda_{2} - \lambda_{1} )}}} $$
(A10a)
$$ B = {\frac{{(a + c - \lambda_{1} )(\lambda_{2} - a + b)}}{{(b + c)(\lambda_{2} - \lambda_{1} )}}} $$
(A10b)
$$ \lambda_{1} = (a + d - \sqrt {a^{2} + d^{2} - 2ad + 4bc} )\Big/2 $$
(A10c)
$$ \lambda_{2} = (a + d + \sqrt {a^{2} + d^{2} - 2ad + 4bc} )\Big/2 $$
(A10d)
$$ a = - 4\pi^{2} {\frac{{(u^{2} + v^{2} )}}{{L^{2} }}}D(\xi ) - k_{a}^{*} $$
(A10e)
$$ b = k_{d} $$
(A10f)
$$ c = k_{a}^{*} $$
(A10g)
$$ d = - k_{d} $$
(A10h)

Curve-fitting the 2D Fourier transform of the fluorescence emission of a video-FRAP image series with (A9) yields the binding rates \( k_{a}^{*} \) and k d , together with D(ξ).

Determination of the Principal Components of the 2D Anisotropic Diffusion Tensor

Let (x, y) stand for the fixed coordinate system of the microscope, and (x′, y′) be the principal directions of D (i.e., material coordinate system), see Fig. 7a. The components of D in the fixed coordinate system (i.e., D xx , D xy , and D yy ) are calculated by curve-fitting the experimental values of D(ξ), estimated at points (u, v) describing an arc of circumference (u 2 + v 2 = constant) in the Fourier space spanning from 0 to π, with Eq. (A4) (Figs. 7b–7c). The components D xx , D xy , and D yy are related to the principal components of D (\( D^{\prime}_{xx} \) and \( D^{\prime}_{yy} \)) by the following relationship:

Figure 7
figure 7

(a) The orientation of the material coordinate system (x′, y′) with respect to the fixed coordinate system (x, y) is θ. (b) D(ξ) is defined over an arc of circumference (u 2 + v 2 = constant) in the Fourier space spanning from 0 to π. (c) Representative curve-fitting of the values of D(ξ) (open circles) with Eq. (A4) (solid line) to yield D xx , D xy , and D yy . Note that D(ξ) was determined by curve-fitting of computer-simulated FRAP data (D xx  = 5 × 10−7 cm2 s−1, D xy  = 1.667 × 10−7 cm2 s−1, D yy  = 5 × 10−7 cm2 s−1, Da = 500, and R = 1) with Eq. (6)

$$ \left[ {\begin{array}{*{20}c} {D_{xx} } & {D_{xy} } \\ {D_{xy} } & {D_{yy} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\cos \theta } & { - \sin \theta } \\ {\sin \theta } & {\cos \theta } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {D^{\prime}_{xx} } & 0 \\ 0 & {D^{\prime}_{yy} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\cos \theta } & {\sin \theta } \\ { - \sin \theta } & {\cos \theta } \\ \end{array} } \right], $$
(A11)

where θ is the orientation of the principal directions of D with respect to (x,y) (Fig. 7a). It follows that

$$ D^{\prime}_{xx} = {\frac{{D_{xx} + D_{yy} + \sqrt {4D_{xy}^{2} + (D_{xx} - D_{yy} ){}^{2}} }}{2}}, $$
(A12a)
$$ D^{\prime}_{yy} = {\frac{{D_{xx} + D_{yy} - \sqrt {4D_{xy}^{2} + (D_{xx} - D_{yy} ){}^{2}} }}{2}}, $$
(A12b)
$$ \tan(2\theta ) = {\frac{{2D_{xy} }}{{D_{xx} - D_{yy} }}}. $$
(A12c)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Travascio, F., Gu, W.Y. Simultaneous Measurement of Anisotropic Solute Diffusivity and Binding Reaction Rates in Biological Tissues by FRAP. Ann Biomed Eng 39, 53–65 (2011). https://doi.org/10.1007/s10439-010-0138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0138-8

Keywords

Navigation