Skip to main content

Advertisement

Log in

Synergy of IL-23 and Th17 Cytokines: New Light on Inflammatory Bowel Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis, involve an interplay between host genetics and environmental factors including intestinal microbiota. Animal models of IBD have indicated that chronic inflammation can result from over-production of inflammatory responses or deficiencies in key negative regulatory pathways. Recent research advances in both T-helper 1 (Th1) and T-helper 17 (Th17) effect responses have offered new insights on the induction and regulation of mucosal immunity which is linked to the development of IBD. Th17 cytokines, such as IL-17 and IL-22, in combination with IL-23, play crucial roles in intestinal protection and homeostasis. IL-23 is expressed in gut mucosa and tends to orchestrate T-cell-independent pathways of intestinal inflammation as well as T cell dependent pathways mediated by cytokines produced by Th1 and Th17 cells. Th17 cells, generally found to be proinflammatory, have specific functions in host defense against infection by recruiting neutrophils and macrophages to infected tissues. Here we will review emerging data on those cytokines and their related regulatory networks that appear to govern the complex development of chronic intestinal inflammation; we will focus on how IL-23 and Th17 cytokines act coordinately to influence the balance between tolerance and immunity in the intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434

    Article  CAS  PubMed  Google Scholar 

  2. Elson CO, Cong Y, Weaver CT et al (2007) Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology 132:2359–2370

    Article  CAS  PubMed  Google Scholar 

  3. Hue S, Ahern P, Buonocore S et al (2006) Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med 203:2473–2483

    Article  CAS  PubMed  Google Scholar 

  4. Uhlig HH, McKenzie BS, Hue S et al (2006) Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25:309–318

    Article  CAS  PubMed  Google Scholar 

  5. Yen D, Cheung J, Scheerens H et al (2006) IL-23 is essential for T cell mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116:1310–1316

    Article  CAS  PubMed  Google Scholar 

  6. Duerr RH, Taylor KD, Brant SR et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463

    Article  CAS  PubMed  Google Scholar 

  7. Wilson NJ, Boniface K, Chan JR et al (2007) Cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957

    Article  CAS  PubMed  Google Scholar 

  8. Veldhoen M, Hocking RJ, Atkins CJ et al (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24(2):179–189

    Article  CAS  PubMed  Google Scholar 

  9. Veldhoen M, Hocking RJ, Flavell RA et al (2006) Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol 7:1151–1156

    Article  CAS  PubMed  Google Scholar 

  10. Volpe E, Servant N, Zollinger R et al (2008) Critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9:650–657

    Article  CAS  PubMed  Google Scholar 

  11. Izcue A, Coombes JL, Powrie F (2006) Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev 212:256–271

    Article  CAS  PubMed  Google Scholar 

  12. Abreu MT, Fukata M, Arditi M (2005) TLR signalingin the gut in health and disease. J Immunol 174:4453–4460

    CAS  PubMed  Google Scholar 

  13. Hamada H, Hiroi T, Nishiyama Y et al (2002) Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 168:57–64

    CAS  PubMed  Google Scholar 

  14. Newberry RD, Lorenz RG (2005) Organizing a mucosal defense. Immunol Rev 206:6–21

    Article  CAS  PubMed  Google Scholar 

  15. Oppmann B, Lesley R, Blom B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725

    Article  CAS  PubMed  Google Scholar 

  16. Ahern PP, Izcue A, Maloy KJ et al (2008) The interleukin-23 axis in intestinal inflammation. Immunol Rev 226:147–159

    Article  PubMed  Google Scholar 

  17. Parham C, Chirica M, Timans J et al (2002) A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168:5699–5708

    CAS  PubMed  Google Scholar 

  18. Kullberg MC, Jankovic D, Feng CG et al (2006) IL-23 plays a key role in Helicobacter hepaticus-induced T celldependent colitis. J Exp Med 203:2485–2494

    Article  CAS  PubMed  Google Scholar 

  19. Becker C, Dornhoff H, Neufert C et al (2006) IL-23 Cross-Regulates IL-12 Production in T Cell-Dependent Experimental Colitis. J Immunol 177:2760–2764

    CAS  PubMed  Google Scholar 

  20. Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8:337–348

    Article  CAS  PubMed  Google Scholar 

  21. Nurieva R, Yang XO, Martinez G et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483

    Article  CAS  PubMed  Google Scholar 

  22. Zhou L, Ivanov II, Spolski R et al (2007) IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974

    Article  CAS  PubMed  Google Scholar 

  23. Williams IR (2006) CCR6 and CCL20: partners in intestinal immunity and lymphorganogenesis. Ann NY Acad Sci 1072:52–61

    Article  CAS  PubMed  Google Scholar 

  24. Fort MM, Cheung J, Yen D et al (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15:985–995

    Article  CAS  PubMed  Google Scholar 

  25. Yao Z, Fanslow WC, Seldin MF et al (1995) Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3:811–821

    Article  CAS  PubMed  Google Scholar 

  26. Toy D, Kugler D, Wolfson M et al (2006) Cutting edge: Interleukin-17 signals through a heteromeric receptor complex. J Immunol 177:36–39

    CAS  PubMed  Google Scholar 

  27. Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin-17. Nat Immunol 6:1133–1141

    Article  CAS  PubMed  Google Scholar 

  28. Reiko I, Masakazu K, Masaharu S et al (2008) Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice Biochem. Biophys Res Commun 377:12–16

    Article  Google Scholar 

  29. Zhang Z, Zheng M, Bindas J et al (2006) Critical role of IL-17 receptor signaling in acute TNBS-induced colitis, Inflamm. Bowel Dis 12:382–388

    Article  Google Scholar 

  30. O’Connor W Jr, Kamanaka M, Booth CJ et al (2009) A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol 10:603–609

    Article  PubMed  Google Scholar 

  31. Ogawa A, Andoh A, Araki Y et al (2004) Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol 110:55–62

    Article  CAS  PubMed  Google Scholar 

  32. Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  CAS  PubMed  Google Scholar 

  33. Chang SH, Dong C (2007) A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res 17:435–440

    PubMed  Google Scholar 

  34. Kuestner RE, Taft DW, Haran A et al (2007) Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 179:5462–5473

    CAS  PubMed  Google Scholar 

  35. Wolk X, Kunz S, Witte E et al (2004) IL-22 increases the innate immunity of tissues. Immunity 21:241–254

    Article  CAS  PubMed  Google Scholar 

  36. Zheng Y, Danilenko DM, Valdez P et al (2007) Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–651

    Article  CAS  PubMed  Google Scholar 

  37. Kreymborg K, Etzensperger R, Dumoutier L et al (2007) IL-22 is expressed by TH17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol 179:8098–8104

    CAS  PubMed  Google Scholar 

  38. Sugimoto X, Ogawa A, Mizoguchi E et al (2008) IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 118:534–544

    CAS  PubMed  Google Scholar 

  39. Zheng X, Valdez PA, Danilenko DM et al (2008) Interleukin 22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282–289

    Article  CAS  PubMed  Google Scholar 

  40. Sanos X, Bui VL, Mortha A et al (2009) RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10:83–91

    Article  CAS  PubMed  Google Scholar 

  41. Malmberg K, Ljunggren H (2009) Spotlight on IL-22-producing NK cell receptor expressing mucosal lymphocytes. Nat Immunol 10:11–12

    Article  CAS  PubMed  Google Scholar 

  42. Izcue A, Hue S, Buonocore S et al (2008) Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 28:559–570

    Article  CAS  PubMed  Google Scholar 

  43. Sutton C, Brereton C, Keogh B et al (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203:1685–1691

    Article  CAS  PubMed  Google Scholar 

  44. Yang XO, Chang SH, Park H et al (2008) Regulation of inflammatory responses by IL-17F. J Exp Med 205:1063–1075

    Article  CAS  PubMed  Google Scholar 

  45. Korn T, Bettelli E, Gao W et al (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487

    Article  CAS  PubMed  Google Scholar 

  46. Chen Z, Laurence A, Kanno Y et al (2006) Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci USA 103:8137–8142

    Article  CAS  PubMed  Google Scholar 

  47. Ivanov II, McKenzie BS, Zhou L et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133

    Article  CAS  PubMed  Google Scholar 

  48. Zhou L, Lopes JE, Chong MM et al (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236–240

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott K. Durum.

Additional information

Special issue article in honor of Professor Armen Galoyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, W., Durum, S.K. Synergy of IL-23 and Th17 Cytokines: New Light on Inflammatory Bowel Disease. Neurochem Res 35, 940–946 (2010). https://doi.org/10.1007/s11064-009-0091-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0091-9

Keywords

Navigation