Skip to main content

Advertisement

Log in

The cell biology of parathyroid hormone in osteoblasts

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Continuous exposure to parathyroid hormone (PTH) is associated with catabolic effects, whereas intermittent exposure to low doses of PTH is associated with anabolic effects. By controlling osteoblast function, PTH increases bone formation on cancellous, endocortical, and periosteal bone surfaces. In general, PTH does not affect the replication of uncommitted osteoblast progenitors but suppresses proliferation of committed osteoprogenitors. Intermittent PTH promotes osteoblast differentiation, in part, by its ability to promote exit from the cell cycle, to activate Wnt signaling in osteoblasts, and to inhibit the Wnt antagonist sclerostin in osteocytes. Insulin-like growth factor-1 is also required for the actions of PTH to increase osteoblast numbers. Intermittent PTH prolongs osteoblast survival in rodents by mechanisms that involve activation and proteolytic degradation of Runx2. PTH’s ability to orchestrate a dynamic range of signaling cascades that determine osteoblast fate may explain both its catabolic and beneficial actions on the skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Potts JT: Parathyroid hormone: past and present. J Endocrinol 2005, 187:311–325.

    Article  PubMed  CAS  Google Scholar 

  2. Gesty-Palmer D, Chen M, Reiter E, et al.: Distinct betaarrestin-and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 2006, 281:10856–10864.

    Article  PubMed  CAS  Google Scholar 

  3. Gensure RC, Gardella TJ, Juppner H: Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun 2005, 328:666–678.

    Article  PubMed  CAS  Google Scholar 

  4. Qin L, Li X, Ko JK, Partridge NC: Parathyroid hormone uses multiple mechanisms to arrest cell cycle progression of osteoblastic cells from G1 to S phase. J Biol Chem 2005, 280:3104–3111.

    Article  PubMed  CAS  Google Scholar 

  5. Knopp E, Troiano N, Bouxsein M, et al.: The effect of aging on the skeletal response to intermittent treatment with parathyroid hormone. Endocrinology 2005, 146:1983–1990.

    Article  PubMed  CAS  Google Scholar 

  6. Datta NS, Chen C, Berry JE, McCauley LK: PTHrP signaling targets cyclin D1 and induces osteoblastic cell growth arrest. J Bone Miner Res 2005, 20:1051–1064.

    Article  PubMed  CAS  Google Scholar 

  7. Wang YH, Liu Y, Rowe DW: Effects of transient PTH on early proliferation, apoptosis, and subsequent differentiation of osteoblast in primary osteoblast cultures. Am J Physiol Endocrinol Metab 2007, 292:E594–E603.

    Article  PubMed  CAS  Google Scholar 

  8. Datta NS, Pettway GJ, Chen C, et al.: Cyclin D1 as a target for the proliferative effects of PTH and PTHrP in early osteoblastic cells. J Bone Miner Res 2007, 22:951–964.

    Article  PubMed  CAS  Google Scholar 

  9. Ogita M, Dworakowski E, Bilezikian JP, Kousteni S: Proliferation and differentiation of periosteal osteoblast progenitors are differentially regulated by sex steroids and intermittent PTH administration. J Bone Miner Res 2007, 22:S95.

    Article  Google Scholar 

  10. Nakazawa T, Nakajima A, Shiomi K, et al.: Effects of low-dose, intermittent treatment with recombinant human parathyroid hormone (1–34) on chondrogenesis in a model of experimental fracture healing. Bone 2005, 37:711–719.

    Article  PubMed  CAS  Google Scholar 

  11. Valenta A, Roschger P, Fratzl-Zelman N, et al.: Combined treatment with PTH (1–34) and OPG increases bone volume and uniformity of mineralization in aged ovariectomized rats. Bone 2005, 37:87–95.

    Article  PubMed  CAS  Google Scholar 

  12. Pettway GJ, Schneider A, Koh AJ, et al.: Anabolic actions of PTH (1–34): use of a novel tissue engineering model to investigate temporal effects on bone. Bone 2005, 36:959–970.

    Article  PubMed  CAS  Google Scholar 

  13. Kulkarni NH, Halladay DL, Miles RR, et al.: Effects of parathyroid hormone on Wnt signaling pathway in bone. J Cell Biochem 2005, 95:1178–1190.

    Article  PubMed  CAS  Google Scholar 

  14. Guo J, Schipani E, Liu M, et al.: Suppression of Dkk1 is not essential for PTH-mediated activation of canonical Wnt signaling in bone. J Bone Miner Res 2005, 20:S2.

    Article  Google Scholar 

  15. Barnes GL, Kakar S, Gerstenfeld LC, Einhorn TA: PTH mediates early stem cell recruitment during fracture repair. J Bone Miner Res 2005, 20:S102.

    Google Scholar 

  16. Shimizu E, Selvamurugan N, Westendorf JJ, Partridge NC: Parathyroid hormone regulates histone deacetylases in osteoblasts. Ann N Y Acad Sci 2007, 1116:349–353.

    Article  PubMed  CAS  Google Scholar 

  17. Li X, Liu H, Qin L, et al.: Determination of dual effects of parathyroid hormone on skeletal gene expression in vivo by microarray and network analysis. J Biol Chem 2007, 282:33086–33097.

    Article  PubMed  CAS  Google Scholar 

  18. Chan GK, Deckelbaum RA, Bolivar I, et al.: PTHrP inhibits adipocyte differentiation by down-regulating PPAR gamma activity via a MAPK-dependent pathway. Endocrinology 2001, 142:4900–4909.

    Article  PubMed  CAS  Google Scholar 

  19. Rickard DJ, Wang FL, Rodriguez-Rojas AM, et al.: Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone 2006, 39:1361–1372.

    Article  PubMed  CAS  Google Scholar 

  20. Bellido T, Ali AA, Plotkin LI, et al.: Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem 2003, 278:50259–50272.

    Article  PubMed  CAS  Google Scholar 

  21. Calvi LM, Sims NA, Hunzelman JL, et al.: Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest 2001, 107:277–286.

    Article  PubMed  CAS  Google Scholar 

  22. Stanislaus D, Devanarayan V, Hock JM: In vivo comparison of activated protein-1 gene activation in response to human parathyroid hormone (hPTH)(1–34) and hPTH(1–84) in the distal femur metaphyses of young mice. Bone 2000, 27:819–826.

    Article  PubMed  CAS  Google Scholar 

  23. Lindsay R, Zhou H, Cosman F, et al.: Effects of a one-month treatment with PTH(1–34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium. J Bone Miner Res 2007, 22:495–502.

    Article  PubMed  CAS  Google Scholar 

  24. Tobimatsu T, Kaji H, Sowa H, et al.: Parathyroid hormone increases beta-catenin levels through Smad3 in mouse osteoblastic cells. Endocrinology 2006, 147:2583–2590.

    Article  PubMed  CAS  Google Scholar 

  25. Kakar S, Einhorn TA, Vora S, et al.: Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res 2007, 22:1903–1912.

    Article  PubMed  CAS  Google Scholar 

  26. Bodine PV, Seestaller-Wehr L, Kharode YP, et al.: Bone anabolic effects of parathyroid hormone are blunted by deletion of the Wnt antagonist secreted frizzled-related protein-1. J Cell Physiol 2007, 210:352–357.

    Article  PubMed  CAS  Google Scholar 

  27. Sawakami K, Robling AG, Ai M, et al.: The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem 2006, 281:23698–23711.

    Article  PubMed  CAS  Google Scholar 

  28. Iwaniec UT, Wronski TJ, Liu J, et al.: PTH stimulates bone formation in mice deficient in Lrp5. J Bone Miner Res 2007, 22:394–402.

    Article  PubMed  CAS  Google Scholar 

  29. Kato M, Patel MS, Levasseur R, et al.: Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002, 157:303–314.

    Article  PubMed  CAS  Google Scholar 

  30. Bellido T, Ali AA, Gubrij I, et al.: Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 2005, 146:4577–4583.

    Article  PubMed  CAS  Google Scholar 

  31. Keller H, Kneissel M: SOST is a target gene for PTH in bone. Bone 2005, 37:148–158.

    Article  PubMed  CAS  Google Scholar 

  32. Loots GG, Kneissel M, Keller H, et al.: Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 2005, 15:928–935.

    Article  PubMed  CAS  Google Scholar 

  33. Leupin O, Kramer I, Collette NM, et al.: Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J Bone Miner Res 2007, 22:1957–1967.

    Article  PubMed  CAS  Google Scholar 

  34. O’Brien CA, Plotkin LI, Vyas K, et al.: Activation of PTH receptor I in osteocytes suppresses Sost expression and increases bone mass in transgenic mice. J Bone Miner Res 2006, 21:S4.

    Article  Google Scholar 

  35. Yamaguchi M, Ogata N, Shinoda Y, et al.: Insulin receptor substrate-1 is required for bone anabolic function of parathyroid hormone in mice. Endocrinology 2005, 146:2620–2628.

    Article  PubMed  CAS  Google Scholar 

  36. Yakar S, Bouxsein ML, Canalis E, et al.: The ternary IGF complex influences postnatal bone acquisition and the skeletal response to intermittent parathyroid hormone. J Endocrinol 2006, 189:289–299.

    Article  PubMed  CAS  Google Scholar 

  37. Wang Y, Nishida S, Boudignon BM, et al.: IGF-I receptor is required for the anabolic actions of parathyroid hormone on bone. J Bone Miner Res 2007, 22:1329–1337.

    Article  PubMed  CAS  Google Scholar 

  38. Jilka RL: Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 2007, 40:1434–1446.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Bilezikian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kousteni, S., Bilezikian, J.P. The cell biology of parathyroid hormone in osteoblasts. Curr Osteoporos Rep 6, 72–76 (2008). https://doi.org/10.1007/s11914-008-0013-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-008-0013-9

Keywords

Navigation