Skip to main content
Log in

Nutrition, Bone, and Aging: An Integrative Physiology Approach

  • Epidemiology and Pathophysiology (Mone Zaidi and Jeffrey I. Mechanick, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Osteoporosis, a condition associated with significant morbidity and mortality, is prevalent in the growing elderly population. Aging is associated with characteristic changes in the complex pathways of bone remodeling and in patterns of food intake. Whereas the traditional focus of nutritional supplementation for protection of bone health has centered around calcium and vitamin D, a multitude of nutrients have been identified with effects on bone, both individually and in combination. An integrative physiology approach can assist in formulating a deeper understanding of the complex interactions of nutrition and aging with bone, with the goal of identifying modifiable risk factors for the prevention of bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Palacios C. The role of nutrients in bone health, from A to Z. Crit Rev Food Sci Nutr. 2006;46:621–8.

    Article  PubMed  CAS  Google Scholar 

  2. Tucker KL. Osteoporosis prevention and nutrition. Curr Osteoporos Rep. 2009;7:111–7.

    Article  PubMed  Google Scholar 

  3. Dennehy C, Tsourounis C. A review of select vitamins and minerals used by postmenopausal women. Maturitas. 2010;66:370–80.

    Article  PubMed  CAS  Google Scholar 

  4. Body JJ, Bergmann P, Boonen S, et al. Non-pharmacological management of osteoporosis: a consensus of the Belgian Bone Club. Osteoporos Int. 2011 Mar 1 (epub ahead of print).

  5. Weiss AJ, Iqbal J, Zaidi N, et al. The skeletal subsystem as an integrative physiology paradigm. Curr Osteoporos Rep. 2010;8:168–77.

    Article  PubMed  Google Scholar 

  6. Heino TJ, Hentunen TA, Vaananen HK. Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen. J Cell Biochem. 2002;85:185–97.

    Article  PubMed  CAS  Google Scholar 

  7. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285:25103–8.

    Article  PubMed  CAS  Google Scholar 

  8. Nakagawa N, Kinosaki M, Yamaguchi K, et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun. 1998;253:395–400.

    Article  PubMed  CAS  Google Scholar 

  9. Lorenzo JA, Canalis E, Raisz LG. Metabolic bone disease. In: Kronenberg HM et al., editors. Williams textbook of endocrinology. Philadelphia: Saunders Elsevier; 2008. p. 1269–310.

    Google Scholar 

  10. Yasuda H, Shima N, Nakagawa N, et al. A novel molecular mechanism modulating osteoclast differentiation and function. Bone. 1999;25:109–13.

    Article  PubMed  CAS  Google Scholar 

  11. Tang Y, Wu X, Lei W, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15:757–65.

    Article  PubMed  CAS  Google Scholar 

  12. Maggio D, Barabani M, Pierandrei M, et al. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. JCEM. 2003;88:1523–7.

    PubMed  CAS  Google Scholar 

  13. Zhang YB, Zhong ZM, Hou G, et al. Involvement of oxidative stress in age-related bone loss. J Surg Res. 2011. doi:10.1016/j.jss.2011.02.033.

  14. Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metabol. 2010;21:369–74.

    Article  CAS  Google Scholar 

  15. Shen CL, Yeh JK, Cao JJ, et al. Green tea and bone health: evidence from laboratory studies. Pharmacol Res. 2011;64:155–161.

    Google Scholar 

  16. Shaw AC, Joshi S, Greenwood H, et al. Aging of the innate immune system. Curr Opin Immunol. 2010;22:507–13.

    Article  PubMed  CAS  Google Scholar 

  17. Weitzmann MN, Pacifici R. T cells: unexpected players in the bone loss induced by estrogen deficiency and in basal bone homeostasis. Ann NY Acad Sci. 2007;1116:360–75.

    Article  PubMed  CAS  Google Scholar 

  18. Clarke BL, Khosla S. Physiology of bone loss. Radiol Clin N Am. 2010;48:483–95.

    Article  PubMed  Google Scholar 

  19. McKane WR, Khosla S, Burritt MF, et al. Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmeopause—a clinical research center study. J Clin Endocrinol Metab. 1995;80:3458–64.

    Article  PubMed  CAS  Google Scholar 

  20. Frost HM. On our age-related bone loss: insights from a new paradigm. J Bone Miner Res. 1997;12:1539–46.

    Article  PubMed  CAS  Google Scholar 

  21. Melton III JLM, Riggs BL, Achenbach SJ, et al. Does reduced skeletal loading account for age-related bone loss. J Bone Miner Res. 2006;21:1847–55.

    Article  PubMed  Google Scholar 

  22. Di Francesco V, Fantin F, Omizzolo F, et al. The anorexia of aging. Dig Dis. 2007;25:129–37.

    Article  PubMed  Google Scholar 

  23. Ahmed T, Haboubi N. Assessment and management of nutrition in older people and its importance to health. Clin Interv Aging. 2010;5:207–16.

    PubMed  Google Scholar 

  24. Di Francesco V, Zamboni M, Dioli A, et al. Delayed postprandial gastric emptying and impaired gallbladder contraction together with elevated cholecystokinin and peptide YY serum levels sustain satiety and inhibit hunger in healthy elderly persons. J Gerontol. 2005;60A:1581–5.

    Google Scholar 

  25. Yeh SS, Schuster MW. Geriatric cachexia: the role of cytokines. Am J Clin Nutr. 1999;70:183–97.

    PubMed  CAS  Google Scholar 

  26. Fralic J, Griffin C. Nutrition and the elderly: a case manager’s guide. Lippincotts Case Manag. 2001;6:177–8.

    Article  PubMed  CAS  Google Scholar 

  27. Ross AC, Taylor CL, Yaktine AL, et al. Dietary reference intakes for calcium and vitamin D. Institute of Medicine, National Academy of Sciences, 2010.

  28. Shea B, Wells G, Cranney A, et al. Calcium supplementation on bone loss in postmenopausal women. Cochrane Database Syst Rev. 2004;1:CD004526.

    PubMed  Google Scholar 

  29. Tang BMP, Eslick GD, Nowson C, et al. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet. 2007;370:657–66.

    Article  PubMed  CAS  Google Scholar 

  30. Rabenda V, Bruyere O, Reginster JY. Relationship between bone mineral density changes and risk of fractures among patients receiving calcium with or without vitamin D supplementation: a meta-regression. Osteoporos Int. 2011;22:893–901.

    Article  PubMed  CAS  Google Scholar 

  31. Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, et al. Calcium intake and hip fracture risk in men and women: a meta-analysis of prospective cohort studies and randomized controlled trials. Am J Clin Nutr. 2007;86:1780–90.

    PubMed  CAS  Google Scholar 

  32. Reid IR, Bolland MJ, Grey A. Effect of calcium supplementation on hip fractures. Osteoporos Int. 2008;19:1119–23.

    Article  PubMed  CAS  Google Scholar 

  33. Tang BMP. Does calcium supplementation really cause more hip fractures? Osteoporos Int. 2009;20:833–4.

    Article  PubMed  CAS  Google Scholar 

  34. Heaney RP, Nordin BE. Calcium effects on phosphorous absorption: implications for the prevention and co-therapy of osteoporosis. J Am Coll Nutr. 2002;21:239–44.

    PubMed  CAS  Google Scholar 

  35. •• Bolland MJ, Avenell A, Baron JA. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010;341:c3691. This meta-analysis publicized the concern for increased cardiovascular events with calcium supplementation.

    Article  PubMed  Google Scholar 

  36. Lanham-New SA. The balance of bone health: tipping the scales in favor of potassium-rich, bicarbonate-rich foods. J Nutr. 2008;138:172s–7s.

    PubMed  CAS  Google Scholar 

  37. Meghji S, Morrison MS, Henderson B, et al. pH dependence of bone resorption: mouse calvarial osteoclasts are activated by acidosis. Am J Physiol Endocrinol Metab. 2001;280:E112–9.

    PubMed  CAS  Google Scholar 

  38. Lemann Jr J, Pleuss JA, Gray RW. Potassium causes calcium retention in healthy adults. J Nutr. 1993;123:1623–6.

    PubMed  CAS  Google Scholar 

  39. Buclin T, Cosma M, Appenzeller M, et al. Diet acids and alkalis influence calcium retention in bone. Osteoporos Int. 2001;12:493–9.

    Article  PubMed  CAS  Google Scholar 

  40. Macdonald HM, New SA, Fraser WD, et al. Low dietary potassium intakes and high dietary estimates of NEAP are associated with low BMD in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr. 2005;81:923–33.

    PubMed  CAS  Google Scholar 

  41. Zhu K, Devine A, Prince RL. The effects of high potassium consumption on bone mineral density in a prospective cohort study of elderly postmenopausal women. Osteoporos Int. 2009;20:335–40.

    Article  PubMed  CAS  Google Scholar 

  42. Macdonald HM, Black AJ, Aucott L, et al. Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am J Clin Nutr. 2008;88:465–74.

    PubMed  CAS  Google Scholar 

  43. •• Fenton TR, Tough SC, Lyon AW, et al. Causal assessment of dietary acid load and bone disease: a systematic review and meta-analysis applying Hill’s epidemiologic criteria for causality. Nutr J. 2011;10:41 (epub ahead of print). This recent meta-analysis calls in to question the validity of the acid-base theory of diet relating to bone.

    Article  PubMed  CAS  Google Scholar 

  44. Odabasi E, Turan M, Aydin A, et al. Magnesium, zinc, copper, manganese and selenium levels in postmenopausal women with osteoporosis. Can magnesium play a key role in osteoporosis? Ann Acad Med Singapore. 2008;37:564–7.

    PubMed  Google Scholar 

  45. Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem. 2004;15:710–6.

    Article  PubMed  CAS  Google Scholar 

  46. Aydin H, Deyneli O, Yavuz D, et al. Short-term oral magnesium supplementation suppresses bone turnover in postmenopausal osteoporotic women. Biol Trace Elem Res. 2010;133:136–43.

    Article  PubMed  CAS  Google Scholar 

  47. Teucher B, Dainty JR, Spinks CA, et al. Sodium and bone health: Impact of moderately high and low salt intakes on calcium metabolism in postmenopausal women. J Bone Miner Res. 2008;23:1477–85.

    Article  PubMed  CAS  Google Scholar 

  48. Devine A, Criddle RA, Dick IM, et al. A longitudinal study of the effect of sodium and calcium intakes on regional bone density in postmenopausal women. Am J Clin Nutr. 1995;62:740–5.

    PubMed  CAS  Google Scholar 

  49. Kurland ES, Schulman RC, Zerwekh JE, et al. Recovery from skeletal fluorosis (an enigmatic, American case). J Bone Miner Res. 2007;22:163–70.

    Article  PubMed  CAS  Google Scholar 

  50. Li X, Hu C, Zhu Y, et al. Effects of aluminum exposure on bone mineral density, mineral and trace elements in rats. Biol Trace Elem Res. 2010. doi:10.1007/s12011-010-8861-4.

  51. Perez-Lopez FR, Chedraui P, Fernandez-Alonso AM. Vitamin D and aging: beyond calcium and bone metabolism. Maturitas. 2011;69:27–36.

    Article  PubMed  CAS  Google Scholar 

  52. Kalyani RR, Stein B, Valiyil R, et al. Vitamin D treatment for the prevention of falls in older people in nursing care facilities and hospitals. Cochrane Database Syst Rev. 2010;(1):CD005465.

  53. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. JCEM. 2011, June, epub ahead of print.

  54. Dipart (vitamin D Individual Patient Analysis of Randomized Trials) Group. Patient level pooled analysis of 68,500 patients from seven major vitamin D fracture trials in US and Europe. BMJ. 2010;340:b5463.

    Article  Google Scholar 

  55. •• Avenell A, Gillespie WJ, Gillespie LD, et al. Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. Cochrane Database Syst Rev. 2009;2:CD000227. This Cochrane review extensively analyzes the association of vitamin D with fracture prevention.

    PubMed  Google Scholar 

  56. The WHO Scientific Group. Prevention and management of osteoporosis. World Health Organ Tech Rep Ser. 2003;921:86–109.

    Google Scholar 

  57. Iwamoto J, Sato Y, Takeda T, et al. High-dose vitamin K supplementation reduces fracture incidence in postmenopausal women: a review of the literature. Nutr Res. 2009;29:221–8.

    Article  PubMed  CAS  Google Scholar 

  58. Tab MM, Sun A, Zhou C, et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem. 2003;278:43919–27.

    Article  Google Scholar 

  59. Shiraki M, Shiraki Y, Aoki C, et al. Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res. 2000;15:515–21.

    Article  PubMed  CAS  Google Scholar 

  60. Cheung AM, Tile L, Lee Y, et al. Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial. PLos Med. 2008;5:e196.

    Article  PubMed  Google Scholar 

  61. Inoue T, Fujita T, Kishimoto H, et al. Randomized controlled study on the prevention of osteoporotic fractures (OF study): a phase IV clinical study of 15-mg menatetrenone capsules. J Bone Miner Metabol. 2009;27:66–75.

    Article  CAS  Google Scholar 

  62. Basu S, Michaelsson K, Olofsson H, et al. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun. 2001;288:275–9.

    Article  PubMed  CAS  Google Scholar 

  63. Sahni S, Hannan MT, Gagnon D, et al. High vitamin C intake is associated with lower 4-year bone loss in elderly men. J Nutr. 2008;138:1931–8.

    PubMed  CAS  Google Scholar 

  64. Melhus H, Michaelsson K, Holmberg L, et al. Smoking, antioxidant vitamins, and the risk of hip fracture. J Bone Miner Res. 1999;14:129–35.

    Article  PubMed  CAS  Google Scholar 

  65. Zhang J, Munger RG, West NA, et al. Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status. Am J Epidemiol. 2006;163:9–17.

    Article  PubMed  Google Scholar 

  66. Ruiz-Ramos M, Vargas LA, Fortoul van der Goes TI, et al. Supplementation of ascorbic acid and alpha-tocopherol is useful to preventing bone loss linked to oxidative stress in elderly. J Nutr Health Aging. 2010;14:467–72.

    Article  PubMed  CAS  Google Scholar 

  67. McLean RR, Hannan MT. B vitamins, homocysteine, and bone disease: epidemiology and pathophysiology. Curr Osteoporos Rep. 2007;5:112–9.

    Article  PubMed  Google Scholar 

  68. Van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, et al. Homocysteine levels and the risk of osteoporotic fracture. NEJM. 2004;350:2033–41.

    Article  PubMed  Google Scholar 

  69. McLean RR, Jacques PF, Selhub J, et al. Homocysteine as a predictive factor for hip fractures in older persons. NEJM. 2004;350:2042–9.

    Article  PubMed  CAS  Google Scholar 

  70. Eastell R, Vieira NE, Yergey AL, et al. Pernicious anaemia as a risk factor for osteoporosis. Clin Sci (Lond). 1992;82:681–5.

    CAS  Google Scholar 

  71. Sato Y, Honda Y, Iwamoto J, et al. Effect of folate and mecobalamin on hip fractures in patients with stroke: a randomized controlled trial. JAMA. 2005;293:1082–8.

    Article  PubMed  CAS  Google Scholar 

  72. Herrmann M, Umanskaya N, Traber L, et al. The effect of B-vitamins on biochemical bone turnover markers and bone mineral density in osteoporotic patients: a 1-year double blind placebo controlled trial. Clin Chem Lab Med. 2007;45:1785–92.

    Article  PubMed  CAS  Google Scholar 

  73. Caire-Juvera G, Ritenbaugh C, Wactawski-Wende J, et al. Vitamin A and retinol intakes and the risk of fractures among participants of the Women’s Health Initiative Observational Study. Am J Clin Nutr. 2009;89:323–30.

    Article  PubMed  CAS  Google Scholar 

  74. Vestergaard P, Rejnmark L, Mosekilde L. High-dose treatment with vitamin A analogues and risk of fractures. Arch Dermatol. 2010;146:478–82.

    Article  PubMed  CAS  Google Scholar 

  75. Feskanich D, Singh V, Willett WC, et al. Vitamin A intake and hip fractures among postmenopausal women. JAMA. 2002;287:47–54.

    Article  PubMed  CAS  Google Scholar 

  76. Johansson S, Melhus H. Vitamin A antagonizes calcium response to vitamin D in man. J Bone Miner Res. 2001;16:1899–905.

    Article  PubMed  CAS  Google Scholar 

  77. Ribaya-Mercado JD, Blumberg JB. Vitamin A: is it a risk factor for osteoporosis and bone fracture? Nutr Rev. 2007;65:425–38.

    Article  PubMed  Google Scholar 

  78. Sahni S, Hannan MT, Blumberg J, et al. Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: a 17-year follow-up from the Framingham Osteoporosis Study. J Bone Miner Res. 2009;24:1086–94.

    Article  PubMed  CAS  Google Scholar 

  79. Kerstetter JE, Kenny AM, Insogna KL. Dietary protein and skeletal health: a review of recent human research. Curr Opin Lipidol. 2011;22:16–20.

    Article  PubMed  CAS  Google Scholar 

  80. Kerstetter JE, O’Brien KO, Insogna KL. Dietary protein, calcium metabolism, and skeletal homeostasis revisited. Am J Clin Nutr. 2003;78:584s–92s.

    PubMed  CAS  Google Scholar 

  81. De Souza Genaro P, Martini LA. Effect of protein intake on bone and muscle mass in the elderly. Nutr Rev. 2010;68:616–23.

    Article  Google Scholar 

  82. Schurch MA, Rizzoli R, Slosman D, et al. Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. Ann Intern Med. 1998;128:801–9.

    PubMed  CAS  Google Scholar 

  83. •• Darling AL, Milward DJ, Torgerson DJ, et al. Dietary protein and bone health: a systematic review and meta-analysis. Am J Clin Nutr. 2009;90:1674–92. This is the first systematic review and meta-analysis studying the relationship of protein and bone.

    Article  PubMed  CAS  Google Scholar 

  84. Katz MG, Vollenhoven B. The reproductive endocrine consequences of anorexia nervosa. BJOG. 2000;107:707–13.

    Article  PubMed  CAS  Google Scholar 

  85. Usdan LS, Khaodhiar L, Apovian CM. The endocrinopathies of anorexia nervosa. Endocr Pract. 2008;14:1055–63.

    PubMed  Google Scholar 

  86. Caporaso F, Frisch F, Sumida KD. Compromised bone health in non-obese, older women with low caloric intake. J Community Health. 2011;36:559–64.

    Article  PubMed  Google Scholar 

  87. Yoo HJ, Park MS, Yang SJ, et al. The differential relationship between fat mass and bone mineral density by gender and menopausal status. J Bone Miner Metabol. 2011. doi:10.1007/s00774-011-0283-7.

  88. Orchard TS, Cauley JA, Frank GC, et al. Fatty acid consumption and risk of fracture in the Women’s Health Initiative. Am J Clin Nutr. 2010;92:1452–60.

    Article  PubMed  CAS  Google Scholar 

  89. Bawa S. The significance of soy protein and soy bioactive compounds in the prophylaxis and treatment of osteoporosis. J Osteoporos. 2010:891058.

  90. Lauderdale DS, Jacobsen SJ, Furner SE, et al. Hip fracture incidence among elderly Asian-American populations. Am J Epidemiol. 1997;146:502–9.

    PubMed  CAS  Google Scholar 

  91. Miadokova E. Isoflavonoids—an overview of their biological activities and potential health benefits. Interdiscipl Toxicol. 2009;2:211–8.

    Article  Google Scholar 

  92. Taku K, Melby MK, Takebayashi J, et al. Effect of soy isoflavone extract supplements on bone mineral density in menopausal women: meta-analysis of randomized controlled trials. Asia Pac J Clin Nutr. 2010;19:33–42.

    PubMed  CAS  Google Scholar 

  93. Berg KM, Kunins HV, Jackson JL, et al. Association between alcohol consumption and both osteoporotic fracture and bone density. Am J Med. 2008;121:406–18.

    Article  PubMed  CAS  Google Scholar 

  94. Gavaler JS, Van Thiel DH. The association between moderate alcoholic beverage consumption and serum estradiol and testosterone levels in normal post-menopausal women: relationship to the literature. Alcohol Clin Exp Res. 1992;16:87.

    Article  PubMed  CAS  Google Scholar 

  95. Rayalam S, Della-Fera MA, Baile CA. Synergism between resveratrol and other phytochemicals: implications for obesity and osteoporosis. Mol Nutr Food Res. 2011;55:1–9.

    Article  Google Scholar 

  96. Zhou Y, Zhu Z, Guan X, et al. Reciprocal roles between caffeine and estrogen on bone via differently regulating cAMP/PKA pathway: the possible mechanism for caffeine-induced osteoporosis in women and estrogen’s antagonistic effects. Med Hypothesis. 2009;73:83–5.

    Article  CAS  Google Scholar 

  97. Kiel DP, Felson DT, Hannan MT, et al. Caffeine and the risk of hip fracture: the Framingham Study. Am J Epidemiol. 1990;132:675–84.

    PubMed  CAS  Google Scholar 

  98. Tucker KL, Morita K, Qiao N, et al. Colas, but not other carbonated beverages, are associated with low bone mineral density in older women: the Framingham Osteoporosis Study. Am J Clin Nutr. 2006;84:936–42.

    PubMed  CAS  Google Scholar 

  99. Shen CL, Yeh JK, Cao JJ, et al. Green tea and bone metabolism. Nutr Res. 2009;29:437–56.

    Article  PubMed  CAS  Google Scholar 

  100. Hallanger Johnson JE, Kearns AE, Doran M, et al. Fluoride-related bone disease associated with habitual tea consumption. Mayo Clin Proc. 2007;82:719–24.

    Article  PubMed  Google Scholar 

  101. Weiss AJ, Lipshtat A, Mechanick JI. A systems approach to bone pathophysiology. Ann NY Acad Sci. 2010;1211:9–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Conflicts of interest: R.C. Schulman: none; A.J. Weiss: none; J.I. Mechanick: has been a consultant, received honoraria, received payment for development of educational presentations including service on speakers’ bureaus, and received travel/accommodations expenses covered or reimbursed by Abbott Nutrition and Nestle Nutrition; and has received grant support from Select Medical Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey I. Mechanick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulman, R.C., Weiss, A.J. & Mechanick, J.I. Nutrition, Bone, and Aging: An Integrative Physiology Approach. Curr Osteoporos Rep 9, 184–195 (2011). https://doi.org/10.1007/s11914-011-0079-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-011-0079-7

Keywords

Navigation