Skip to main content

Advertisement

Log in

Impact of the Environment on the Skeleton: Is it Modulated by Genetic Factors?

  • Nutrition and Lifestyle in Osteoporosis (S Ferrari, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The etiology of skeletal disease is driven by genetic and environmental factors. Genome-wide association studies (GWAS) of osteoporotic phenotypes have identified novel candidate genes, but have only uncovered a small proportion of the trait variance explained. This “missing heritability” is caused by several factors, including the failure to consider gene-by-environmental (G*E) interactions. Some G*E interactions have been investigated, but new approaches to integrate environmental data into genomic studies are needed. Advances in genotyping and meta-analysis techniques now allow combining genotype data from multiple studies, but the measurement of key environmental factors in large human cohorts still lags behind, as do the statistical tools needed to incorporate these measures in genome-wide association meta-studies. This review focuses on discussing ways to enhance G*E interaction studies in humans and how the use of rodent models can inform genetic studies. Understanding G*E interactions will provide opportunities to effectively target intervention strategies for individualized therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726–33.

    Article  PubMed  CAS  Google Scholar 

  2. Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75.

    Article  PubMed  Google Scholar 

  3. Samelson EJ, Cupples LA, Hannan MT, et al. Long-term effects of serum cholesterol on bone mineral density in women and men: the Framingham Osteoporosis Study. Bone. 2004;34(3):557–61.

    Article  PubMed  CAS  Google Scholar 

  4. Leslie WD. Clinical review: ethnic differences in bone mass–clinical implications. J Clin Endocrinol Metab. 2012;97(12):4329–40.

    Article  PubMed  CAS  Google Scholar 

  5. Xu XH, Dong SS, Guo Y, et al. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev. 2010;31(4):447–505.

    Article  PubMed  CAS  Google Scholar 

  6. Easwaran H, Johnstone SE, Van Neste L, et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res. 2012;22(5):837–49.

    Article  PubMed  CAS  Google Scholar 

  7. Park S, Yang JS, Kim J, et al. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases. Sci Rep. 2012;2:757.

    PubMed  Google Scholar 

  8. Khoury MJ, McCabe LL, McCabe ER. Population screening in the age of genomic medicine. N Engl J Med. 2003;348(1):50–8.

    Article  PubMed  CAS  Google Scholar 

  9. Pencina MJ, D'Agostino Sr RB, D'Agostino Jr RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27(2):157–72. discussion 207–12.

    Article  PubMed  Google Scholar 

  10. Lee SH, Lee SW, Ahn SH, et al. Multiple gene polymorphisms can improve prediction of non-vertebral fracture in postmenopausal women. J Bone Miner Res. 2013. doi:10.1002/jbmr.1955.

  11. Burke W, Psaty BM. Personalized medicine in the era of genomics. JAMA. 2007;298(14):1682–4.

    Article  PubMed  CAS  Google Scholar 

  12. •• Yang J, Benyamin B, McEvoy BP, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42(7):565–9. Using data from a large-size GWAS of human height, this paper demonstrates that much of the so-called ‘missing heritability’ can be explained by large numbers of polymorphisms of small effect. By including allelic data at lesser minor allelic frequency and a restricted maximum likelihood model, they were able to explain approximately one-half heritability of human height.

    Article  PubMed  CAS  Google Scholar 

  13. Beaty TH, Ruczinski I, Murray JC, et al. Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate. Genet Epidemiol. 2011;35(6):469–78.

    PubMed  Google Scholar 

  14. Liu Y, Xu H, Chen S, et al. Genome-wide interaction-based association analysis identified multiple new susceptibility Loci for common diseases. PLoS Genet. 2011;7(3):e1001338.

    Article  PubMed  CAS  Google Scholar 

  15. Cordain L, Eaton SB, Sebastian A, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81(2):341–54.

    PubMed  CAS  Google Scholar 

  16. Scott EC. This I, believe: we need to understand evolution, adaptation, and phenotype. Front Genet. 2012;3:303.

    PubMed  Google Scholar 

  17. Varki A, Geschwind DH, Eichler EE. Explaining human uniqueness: genome interactions with environment, behavior and culture. Nat Rev Genet. 2008;9(10):749–63.

    Article  PubMed  CAS  Google Scholar 

  18. Booth FW, Lees SJ. Fundamental questions about genes, inactivity, and chronic diseases. Physiol Genomics. 2007;28(2):146–57.

    PubMed  CAS  Google Scholar 

  19. Cotter MM, Loomis DA, Simpson SW, et al. Human evolution and osteoporosis-related spinal fractures. PLoS One. 2011;6(10):e26658.

    Article  PubMed  CAS  Google Scholar 

  20. Karasik D. Osteoporosis: an evolutionary perspective. Hum Genet. 2008;124(4):349–56.

    Article  PubMed  Google Scholar 

  21. Stedman HH, Kozyak BW, Nelson A, et al. Myosin gene mutation correlates with anatomical changes in the human lineage. Nature. 2004;428(6981):415–8.

    Article  PubMed  CAS  Google Scholar 

  22. Stathopoulou MG, Grigoriou E, Dedoussis G. Calcium and vitamin D intake interactions with genetic variants on bone phenotype. Curr Nutr Rep. 2012;1:169–74.

    Article  CAS  Google Scholar 

  23. Dawson-Hughes B, Mithal A, Bonjour JP, et al. IOF position statement: vitamin D recommendations for older adults. Osteoporos Int. 2010;21(7):1151–4.

    Article  PubMed  CAS  Google Scholar 

  24. Ferrari S, Rizzoli R, Manen D, et al. Vitamin D receptor gene start codon polymorphisms (FokI) and bone mineral density: interaction with age, dietary calcium, and 3'-end region polymorphisms. J Bone Miner Res. 1998;3(6):925–30.

    Article  Google Scholar 

  25. Ferrari SL, Karasik D, Liu J, et al. Interactions of interleukin-6 promoter polymorphisms with dietary and lifestyle factors and their association with bone mass in men and women from the framingham osteoporosis study. J Bone Miner Res. 2004;19(4):552–9.

    Article  PubMed  CAS  Google Scholar 

  26. Kiel DP, Ferrari SL, Cupples LA, et al. Genetic variation at the low-density lipoprotein receptor-related protein 5 (LRP5) locus modulates Wnt signaling and the relationship of physical activity with bone mineral density in men. Bone. 2007;40(3):587–96.

    Article  PubMed  CAS  Google Scholar 

  27. Ackert-Bicknell CL, Demissie S, Marin de Evsikova C, et al. PPARG by dietary fat interaction influences bone mass in mice and humans. J Bone Miner Res. 2008;23(9):1398–408.

    Article  PubMed  Google Scholar 

  28. Little J, Higgins JP, Ioannidis JP, et al. STrengthening the REporting of Genetic Association Studies (STREGA)–an extension of the STROBE statement. Genet Epidemiol. 2009;33(7):581–98.

    Article  PubMed  Google Scholar 

  29. • Thomas D. Gene—environment-wide association studies: emerging approaches. Nat Rev Genet. 2010;11(4):259–72. A useful review with forays into the randomized clinical trials and pharmacogenomics.

    Article  PubMed  CAS  Google Scholar 

  30. Patel CJ, Cullen MR, Ioannidis JP, Butte AJ. Systematic evaluation of environmental factors: persistent pollutants and nutrients correlated with serum lipid levels. Int J Epidemiol. 2012;41(3):828–43.

    Article  PubMed  Google Scholar 

  31. Liu CT, Estrada K, Yerges-Armstrong LM, et al. Assessment of gene-by-sex interaction effect on bone mineral density. J Bone Miner Res. 2012;27(10):2051–64.

    Article  PubMed  CAS  Google Scholar 

  32. Koller DL, Zheng HF, Karasik D, et al. Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women. J Bone Miner Res. 2013;28(3):547–58.

    Article  PubMed  CAS  Google Scholar 

  33. Patsopoulos NA, Tatsioni A, Ioannidis JP. Claims of sex differences: an empirical assessment in genetic associations. JAMA. 2007;298(8):880–93.

    Article  PubMed  CAS  Google Scholar 

  34. Aitman TJ, Boone C, Churchill GA, et al. The future of model organisms in human disease research. Nat Rev Genet. 2011;12(8):575–82.

    Article  PubMed  CAS  Google Scholar 

  35. Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420(6915):520–62.

    Article  PubMed  CAS  Google Scholar 

  36. Ackert-Bicknell CL, Karasik D, Li Q, et al. Mouse BMD quantitative trait loci show improved concordance with human genome-wide association loci when recalculated on a new, common mouse genetic map. J Bone Miner Res. 2010;25(8):1808–20.

    Article  PubMed  CAS  Google Scholar 

  37. Paigen K. A miracle enough: the power of mice. Nat Med. 1995;1(3):215–20.

    Article  PubMed  CAS  Google Scholar 

  38. Broman KW. Review of statistical methods for QTL mapping in experimental crosses. Lab Anim (NY). 2001;30(7):44–52.

    CAS  Google Scholar 

  39. Li X, Masinde G, Gu W, et al. Genetic dissection of femur breaking strength in a large population (MRL/MpJ x SJL/J) of F2 Mice: single QTL effects, epistasis, and pleiotropy. Genomics. 2002;79(5):734–40.

    Article  PubMed  CAS  Google Scholar 

  40. Masinde GL, Wergedal J, Davidson H, et al. Quantitative trait loci for periosteal circumference (PC): identification of single loci and epistatic effects in F2 MRL/SJL mice. Bone. 2003;32(5):554–60.

    Article  PubMed  CAS  Google Scholar 

  41. Kesavan C, Mohan S, Srivastava AK, et al. Identification of genetic loci that regulate bone adaptive response to mechanical loading in C57BL/6J and C3H/HeJ mice intercross. Bone. 2006;39(3):634–43.

    Article  PubMed  CAS  Google Scholar 

  42. Wergedal J, Ackert-Bicknell C, Tsaih S, et al. Femur mechanical properties in the F2 progeny of an NZB/B1NJ x RF/J cross are regulated predominantly by genetic loci that regulate bone geometry. J Bone Miner Res. 2006;21(8):1256–66.

    Article  PubMed  CAS  Google Scholar 

  43. Shimizu M, Higuchi K, Bennett B, et al. Identification of peak bone mass QTL in a spontaneously osteoporotic mouse strain. Mamm Genome. 1999;10(2):81–7.

    Article  PubMed  CAS  Google Scholar 

  44. Nakanishi R, Shimizu M, Mori M, et al. Secreted frizzled-related Protein 4 is a negative regulator of peak BMD in SAMP6 Mice. J Bone Miner Res. 2006;21(11):1713–21.

    Article  PubMed  CAS  Google Scholar 

  45. Bower AL, Lang DH, Vogler GP, et al. QTL analysis of trabecular bone in BXD F2 and RI mice. J Bone Miner Res. 2006;21(8):1267–75.

    Article  PubMed  Google Scholar 

  46. Carson EA, Kenney-Hunt JP, Pavlicev M, et al. Weak genetic relationship between trabecular bone morphology and obesity in mice. Bone. 2012;51(1):46–53.

    Article  PubMed  Google Scholar 

  47. Lang DH, Sharkey NA, Mack HA, et al. Quantitative trait loci analysis of structural and material skeletal phenotypes in C57BL/6J and DBA/2 second-generation and recombinant inbred mice. J Bone Miner Res. 2005;20(1):88–99.

    Article  PubMed  CAS  Google Scholar 

  48. Reich MS, Jarvis JP, Silva MJ, Cheverud JM. Genetic relationships between obesity and osteoporosis in LGXSM recombinant inbred mice. Gen Res. 2008;90(5):433–44.

    Article  CAS  Google Scholar 

  49. Klein R, Mitchell S, Phillips T, et al. Quantitative trait loci affecting peak bone mineral density in mice. J Bone Miner Res. 1998;13:1648–56.

    Article  PubMed  CAS  Google Scholar 

  50. Lang DH, Sharkey NA, Lionikas A, et al. Adjusting data to body size: a comparison of methods as applied to quantitative trait loci analysis of musculoskeletal phenotypes. J Bone Miner Res. 2005;20(5):748–57.

    Article  PubMed  Google Scholar 

  51. Saless N, Litscher SJ, Lopez Franco GE, et al. Quantitative trait loci for biomechanical performance and femoral geometry in an intercross of recombinant congenic mice: restriction of the Bmd7 candidate interval. FASEB J. 2009;23(7):2142–54.

    Article  PubMed  CAS  Google Scholar 

  52. Saless N, Litscher SJ, Houlihan MJ, et al. Comprehensive skeletal phenotyping and linkage mapping in an intercross of recombinant congenic mouse strains HcB-8 and HcB-23. Cells Tissues Organs. 2011;194(2–4):244–8.

    Article  PubMed  CAS  Google Scholar 

  53. Saless N, Litscher SJ, Vanderby R, et al. Linkage mapping of principal components for femoral biomechanical performance in a reciprocal HCB-8 x HCB-23 intercross. Bone. 2011;48(3):647–53.

    Article  PubMed  Google Scholar 

  54. Saless N, Lopez Franco GE, Litscher S, et al. Linkage mapping of femoral material properties in a reciprocal intercross of HcB-8 and HcB-23 recombinant mouse strains. Bone. 2010;46(5):1251–9.

    Article  PubMed  CAS  Google Scholar 

  55. Beamer WG, Shultz KL, Donahue LR, et al. Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice. J Bone Miner Res. 2001;16:1195–206.

    Article  PubMed  CAS  Google Scholar 

  56. Farber CR, van Nas A, Ghazalpour A, et al. An integrative genetics approach to identify candidate genes regulating BMD: combining linkage, gene expression, and association. J Bone Miner Res. 2009;24(1):105–16.

    Article  PubMed  CAS  Google Scholar 

  57. Cox A, Ackert-Bicknell CL, Dumont B, et al. A new standard genetic map for the laboratory mouse. Genetics. 2009;182(4):1335–44.

    Article  PubMed  CAS  Google Scholar 

  58. Ackert-Bicknell C, Paigen B, Korstanje R. Recalculation of 23 mouse HDL QTL datasets improves accuracy and allows for better candidate gene analysis. J Lipid Res. 2013;54(4):984–94.

    Article  PubMed  CAS  Google Scholar 

  59. Darvasi A, Soller M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics. 1995;141(3):1199–207.

    PubMed  CAS  Google Scholar 

  60. Darvasi A. Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet. 1998;18(1):19–24.

    Article  PubMed  CAS  Google Scholar 

  61. • Leamy LJ, Kelly SA, Hua K, et al. Quantitative trait loci for bone mineral density and femoral morphology in an advanced intercross population of mice. Bone. 2013;55(1):222–9. This paper clearly highlights that dietary fat interacts with genetic loci to impact bone morphology, but also serves to highlight the complexity and power issue trade-offs that arise from incorporating covariates into mapping models.

    Article  PubMed  Google Scholar 

  62. Norgard EA, Lawson HA, Pletscher LS, et al. Genetic factors and diet affect long-bone length in the F34 LG, SM advanced intercross. Mamm Genome. 2011;22(3–4):178–96.

    Article  PubMed  Google Scholar 

  63. Silver LM. Mouse genetics. New York: Oxford University Press; 1995.

    Google Scholar 

  64. Cao JJ, Sun L, Gao H. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann N Y Acad Sci. 2010;1192:292–7.

    Article  PubMed  CAS  Google Scholar 

  65. Flint J, Valdar W, Shifman S, Mott R. Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet. 2005;6(4):271–86.

    Article  PubMed  CAS  Google Scholar 

  66. Keane TM, Goodstadt L, Danecek P, et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature. 2011;477(7364):289–94.

    Article  PubMed  CAS  Google Scholar 

  67. Wang JR, de Villena FP, Lawson HA, et al. Imputation of single-nucleotide polymorphisms in inbred mice using local phylogeny. Genetics. 2012;190(2):449–58.

    Article  PubMed  CAS  Google Scholar 

  68. • Welsh CE, Miller DR, Manly KF, et al. Status and access to the Collaborative Cross population. Mamm Genome. 2012;23(9–10):706–12. The Collaborative Cross represents a powerful new mouse genetic reference population. Because of the inclusion of wild derived strains as founders, over 38 million polymorphisms are represented in this population. Further as these lines are near isogenic stock, genetically balanced environmental interaction studies can be conducted with these mice, thus, these mice represent a powerful future resource for G*E studies.

    Article  PubMed  Google Scholar 

  69. Churchill GA, Airey DC, Allayee H, et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet. 2004;36(11):1133–7.

    Article  PubMed  CAS  Google Scholar 

  70. Iraqi FA, Churchill G, Mott R. The Collaborative Cross, developing a resource for mammalian systems genetics: a status report of the Wellcome Trust cohort. Mamm Genome. 2008;19(6):379–81.

    Article  PubMed  Google Scholar 

  71. Morahan G, Balmer L, Monley D. Establishment of "The Gene Mine": a resource for rapid identification of complex trait genes. Mamm Genome. 2008;19(6):390–3.

    Article  PubMed  Google Scholar 

  72. Chesler E, Miller D, Branstetter L, et al. The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm Genome. 2008;19(6):382–9.

    Article  PubMed  Google Scholar 

  73. Churchill GA, Gatti DM, Munger SC, Svenson KL. The Diversity Outbred mouse population. Mamm Genome. 2012;23(9–10):713–8.

    Article  PubMed  Google Scholar 

  74. • Philip VM, Sokoloff G, Ackert-Bicknell CL, et al. Genetic analysis in the Collaborative Cross breeding population. Genome Res. 2011;21(8):1223–38. This paper represents the first use of the Collaborative Cross in skeletal biology and emphasizes the superior genetic loci mapping resolution possible when using this population. This paper also emphasizes the increased phenotypic variation represented by these mice, suggesting that these mice will be more sensitive to environmental stressors.

    Article  PubMed  CAS  Google Scholar 

  75. Shimizu Y, Sakai A, Menuki K, et al. Reduced bone formation in alcohol-induced osteopenia is associated with elevated p21 expression in bone marrow cells in aldehyde dehydrogenase 2-disrupted mice. Bone. 2011;48(5):1075–86.

    Article  PubMed  CAS  Google Scholar 

  76. •• Wahl EC, Aronson J, Liu L, et al. Distraction osteogenesis in TNF receptor 1 deficient mice is protected from chronic ethanol exposure. Alcohol. 2012;46(2):133–8. Fracture healing studies from a genetics point of view are difficult to conduct using human subjects and social behaviour environmental factors such as alcohol-use are equally complicated to study due to difficulties associated with accurate data collection. This study powerfully demonstrates that animal models will allow for the meaningful study of G*E interactions impacting extremely complex phenotypes.

    Article  PubMed  CAS  Google Scholar 

  77. Karasik D, Ferrari SL. Contribution of gender-specific genetic factors to osteoporosis risk. Ann Hum Genet. 2008;72(Pt 5):696–714.

    Article  PubMed  CAS  Google Scholar 

  78. Macdonald HM, McGuigan FE, Lanham-New SA, et al. Vitamin K1 intake is associated with higher bone mineral density and reduced bone resorption in early postmenopausal Scottish women: no evidence of gene-nutrient interaction with apolipoprotein E polymorphisms. Am J Clin Nutr. 2008;87(5):1513–20.

    PubMed  CAS  Google Scholar 

  79. Gonzalez-Bofill N, Husted LB, Harslof T, et al. Effects of COLIA1 polymorphisms and haplotypes on perimenopausal bone mass, postmenopausal bone loss and fracture risk. Osteoporos Int. 2011;22(4):1145–56.

    Article  PubMed  CAS  Google Scholar 

  80. Sonoda T, Takada J, Iba K, et al. Interaction between ESRalpha polymorphisms and environmental factors in osteoporosis. J Orthop Res. 2012;30(10):1529–34.

    Article  PubMed  CAS  Google Scholar 

  81. Li X, He GP, Zhang B, et al. Interactions of interleukin-6 gene polymorphisms with calcium intake and physical activity on bone mass in pre-menarche Chinese girls. Osteoporos Int. 2008;19(11):1629–37.

    Article  PubMed  CAS  Google Scholar 

  82. Stathopoulou MG, Dedoussis GV, Trovas G, et al. Low-density lipoprotein receptor-related protein 5 polymorphisms are associated with bone mineral density in Greek postmenopausal women: an interaction with calcium intake. J Am Diet Assoc. 2010;110(7):1078–83.

    Article  PubMed  CAS  Google Scholar 

  83. Yazdanpanah N, Uitterlinden AG, Zillikens MC, et al. Low dietary riboflavin but not folate predicts increased fracture risk in postmenopausal women homozygous for the MTHFR 677 T allele. J Bone Miner Res. 2008;23(1):86–94.

    Article  PubMed  CAS  Google Scholar 

  84. Steer C, Emmett P, Lewis S, et al. THe Methylenetetrahydrofolate Reductase (MTHFR) C677T polymorphism is associated with spinal BMD in nine-year-old children. J Bone Miner Res. 2009; 24(1):117–24.

    Google Scholar 

  85. Harslof T, Tofteng CL, Husted LB, et al. Polymorphisms of the peroxisome proliferator-activated receptor gamma (PPARgamma) gene are associated with osteoporosis. Osteoporos Int. 2011;22(10):2655–66.

    Article  PubMed  CAS  Google Scholar 

  86. Stathopoulou MG, Dedoussis GV, Trovas G, et al. The role of vitamin D receptor gene polymorphisms in the bone mineral density of Greek postmenopausal women with low calcium intake. J Nutr Biochem. 2011;22(8):752–7.

    Article  PubMed  CAS  Google Scholar 

  87. Lieben L, Benn BS, Ajibade D, et al. Trpv6 mediates intestinal calcium absorption during calcium restriction and contributes to bone homeostasis. Bone. 2010;47(2):301–8.

    Article  PubMed  CAS  Google Scholar 

  88. • Shu L, Ji J, Zhu Q, et al. The calcium-sensing receptor mediates bone turnover induced by dietary calcium and parathyroid hormone in neonates. J Bone Miner Res. 2011;26(5):1057–71. This study demonstrates the complexity of environmental interactions on pathways and systems.

    Article  PubMed  CAS  Google Scholar 

  89. Datta NS, Samra TA, Mahalingam CD, et al. Role of PTH1R internalization in osteoblasts and bone mass using a phosphorylation-deficient knock-in mouse model. J Endocrinol. 2010;207(3):355–65.

    Article  PubMed  CAS  Google Scholar 

  90. Guo J, Liu M, Yang D, et al. Phospholipase C signaling via the parathyroid hormone (PTH)/PTH-related peptide receptor is essential for normal bone responses to PTH. Endocrinology. 2010;151(8):3502–13.

    Article  PubMed  CAS  Google Scholar 

  91. • Ichikawa S, Austin AM, Gray AK, et al. Dietary phosphate restriction normalizes biochemical and skeletal abnormalities in a murine model of tumoral calcinosis. Endocrinology. 2011;152(12):4504–13. This is a preclinical trial demonstrating how G*E interaction studies may direct and shape future treatment options.

    Article  PubMed  CAS  Google Scholar 

  92. Urs S, Henderson T, Le P, et al. Tissue-specific expression of Sprouty1 in mice protects against high-fat diet-induced fat accumulation, bone loss and metabolic dysfunction. Br J Nutr. 2012;108(6):1025–33.

    Article  PubMed  CAS  Google Scholar 

  93. Le P, Kawai M, Bornstein S, et al. A high-fat diet induces bone loss in mice lacking the Alox5 gene. Endocrinology. 2012;153(1):6–16.

    Article  PubMed  CAS  Google Scholar 

  94. Nie J, Bradshaw AD, Delany AM, Sage EH. Inactivation of SPARC enhances high-fat diet-induced obesity in mice. Connect Tissue Res. 2011;52(2):99–108.

    Article  PubMed  CAS  Google Scholar 

  95. Brennan-Speranza TC, Rizzoli R, Kream BE, et al. Selective osteoblast overexpression of IGF-I in mice prevents low protein-induced deterioration of bone strength and material level properties. Bone. 2011;49(5):1073–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

CL Ackert-Bicknell’s institution has received grant from NIAMS/NIH (AR060234) to support her work. D Karasik declares that he has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Karasik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackert-Bicknell, C.L., Karasik, D. Impact of the Environment on the Skeleton: Is it Modulated by Genetic Factors?. Curr Osteoporos Rep 11, 219–228 (2013). https://doi.org/10.1007/s11914-013-0151-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-013-0151-6

Keywords

Navigation