Skip to main content

Advertisement

Log in

Pathogenesis of ANCA-Associated Vasculitis

  • VASCULITIS (LR ESPINOZA, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Antineutrophil cytoplasmic autoantibodies (ANCA)-associated vasculitides (AAV) are a group of systemic vasculitis syndromes characterized by inflammation and necrosis of blood vessel walls. Genetic, epigenetic, and environmental factors contribute to the etiology and pathogenesis of AAV. On the basis of currently available clinical and experimental evidence, it is reasonable to believe that, in predisposed patients, different triggers can lead to the production of autoantibodies (ANCA) that, in the context of an inflammatory environment, can cause tissue inflammation and vascular injury. Several different pathways and mechanisms in the pathogenesis of AAV are described in this contemporary review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

NG:

Necrotizing granuloma

H:

Histiocyte

PMN:

Polymorphonuclear neutrophil

T:

T Lymphocyte

B:

B Lymphocyte

DC:

Dendritic cell

GC:

Giant cell

P:

Plasma cell

Mono:

Monocyte

PR3:

Proteinase 3

LPS:

Lipopolysaccharide

ROS:

Reactive oxygen species

ANCA:

Anti-neutrophil cytoplasmic antibodies

HLE:

Human leukocyte elastase

NO:

Nitric oxide

MPO:

Myeloperoxidase

IL-8:

Interleukin 8

MCP-1:

Monocyte chemoattractant protein-1

TNFα:

Tumor necrosis factor α

IL-1β:

Interleukin 1β

IL-1:

Interleukin 1

ICAM:

Intercellular adhesion molecule

VCAM:

Vascular cell adhesion molecule

PGE2:

Prostaglandin E2

TxB2:

Thromboxane B2

MAC:

Membrane attack complex

TLRs:

Toll-like receptors

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jennette JC, Falk RJ, Andrassy K, Bacon BA, Churg J, Gross WL, et al. Nomenclature of systemic vasculitides: the proposal of an international consensus conference. Arthritis Rheum. 1994;37:187–92.

    PubMed  CAS  Google Scholar 

  2. Hoffman GS, Specks U. Anti-neutrophil cytoplasmic antibodies. Arthritis Rheum. 1998;41:1521–37.

    PubMed  CAS  Google Scholar 

  3. Keogh KA, Specks U. Churg-Strauss syndrome. clinical presentation, antineutrophil cytoplasmic antibodies, and leukotriene receptor antagonists. Am J Med. 2003;115(4):284–90.

    PubMed  CAS  Google Scholar 

  4. Sinico RA, Di Toma L, Maggiore U, Bottero P, Radice A, Tosoni C, et al. Prevalence and clinical significance of antineutrophil cytoplasmic antibodies in Churg–Strauss syndrome. Arthritis Rheum. 2005;52(9):2926–35.

    PubMed  CAS  Google Scholar 

  5. Sable-Fourtassou R, Cohen P, Mahr A, Pagnoux C, Mouthon L, Jayne D, et al. Antineutrophil cytoplasmic antibodies and the Churg–Strauss syndrome. Ann Intern Med. 2005;143(9):632–8.

    PubMed  Google Scholar 

  6. Watts RA, Lane SE, Bentham G, Scott DG. Epidemiology of systemic vasculitis: a ten-year study in the United Kingdom. Arthritis Rheum. 2000;43(2):414–9.

    PubMed  CAS  Google Scholar 

  7. Watts RA, Gonzalez-Gay MA, Lane SE, Garcia-Porrua C, Bentham G, Scott DG. Geoepidemiology of systemic vasculitis: comparison of the incidence in two regions of Europe. Ann Rheum Dis. 2001;60(2):170–2.

    PubMed  CAS  Google Scholar 

  8. Reinhold-Keller E, Herlyn K, Wagner-Bastmeyer R, Gutfleisch J, Peter HH, Raspe HH, et al. No difference in the incidences of vasculitides between north and south Germany: first results of the German vasculitis register. Rheumatol (Oxford). 2002;41(5):540–9.

    CAS  Google Scholar 

  9. Watts RA, Lane SE, Scott DG, Koldingsnes W, Nossent H, Gonzalez-Gay MA, et al. Epidemiology of vasculitis in Europe. Ann Rheum Dis. 2001;60(12):1156–7.

    PubMed  CAS  Google Scholar 

  10. Watts RA, Scott DG. Epidemiology of the vasculitides. Semin Respir Crit Care Med. 2004;25(5):455–64.

    PubMed  Google Scholar 

  11. Cotch MF, Hoffman GS, Yerg DE, Kaufman GI, Targonski P, Kaslow RA. The epidemiology of Wegener's granulomatosis. Estimates of the five-year period prevalence, annual mortality, and geographic disease distribution from population-based data sources. Arthritis Rheum. 1996;39:87–92.

    PubMed  CAS  Google Scholar 

  12. Watts RA, Scott DG, Jayne DR, Ito-Ihara T, Muso E, Fujimoto S, et al. Renal vasculitis in Japan and the UK–are there differences in epidemiology and clinical phenotype? Nephrol Dial Transplant. 2008;23(12):3928–31.

    PubMed  Google Scholar 

  13. O'Donnell JL, Stevanovic VR, Frampton C, Stamp LK, Chapman PT. Wegener's granulomatosis in New Zealand: evidence for a latitude-dependent incidence gradient. Intern Med J. 2007;37(4):242–6.

    PubMed  Google Scholar 

  14. Mahr A, Guillevin L, Poissonnet M, Ayme S. Prevalences of polyarteritis nodosa, microscopic polyangiitis, Wegener's granulomatosis, and Churg–Strauss syndrome in a French urban multiethnic population in 2000: a capture-recapture estimate. Arthritis Rheum. 2004;51(1):92–9.

    PubMed  Google Scholar 

  15. Moins-Teisserenc HT, Gadola SD, Cella M, Dunbar PR, Exley A, Blake N, et al. Association of a syndrome resembling Wegener's granulomatosis with low surface expression of HLA class-I molecules. Lancet [Res Support, Non-US Gov't]. 1999;354(9190):1598–603.

    PubMed  CAS  Google Scholar 

  16. Villa-Forte A, de la Salle H, Fricker D, Hentges F, Zimmer J. HLA class I deficiency syndrome mimicking Wegener's granulomatosis. Arthritis Rheuma [Case Rep Res Support, Non-US Gov't]. 2008;58(8):2579–82.

    Google Scholar 

  17. Moins-Teisserenc HT, Gadola SD, Cella M, Dunbar PR, Exley A, Blake N, et al. Association of a syndrome resembling Wegener's granulomatosis with low surface expression of HLA class-I molecules. Lancet. 1999;354(9190):1598–603.

    PubMed  CAS  Google Scholar 

  18. Knight A, Sandin S, Askling J. Risks and relative risks of Wegener's granulomatosis among close relatives of patients with the disease. Arthritis Rheum. 2008;58(1):302–7.

    PubMed  Google Scholar 

  19. Rottem M, Cotch MF, Fauci AS, Hoffman GS. Familial vasculitis: report of 2 families. J Rheumatol. 1994;21(3):561–3.

    PubMed  CAS  Google Scholar 

  20. Manganelli P, Giacosa R, Fietta P, Zanetti A, Neri TM. Familial vasculitides: Churg–Strauss syndrome and Wegener's granulomatosis in 2 first-degree relatives. J Rheumatol. 2003;30(3):618–21.

    PubMed  Google Scholar 

  21. Willcocks LC, Lyons PA, Rees AJ, Smith KG. The contribution of genetic variation and infection to the pathogenesis of ANCA-associated systemic vasculitis. Arthritis Res Ther. 2010;12(1):202.

    PubMed  Google Scholar 

  22. Shiina T, Inoko H, Kulski JK. An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens [Review]. 2004;64(6):631–49.

    PubMed  CAS  Google Scholar 

  23. Yang R, Cui Z, Zhao J, Zhao MH. The role of HLA-DRB1 alleles on susceptibility of Chinese patients with anti-GBM disease. Clin Immunol [Res Support, Non-US Gov't]. 2009;133(2):245–50.

    PubMed  CAS  Google Scholar 

  24. Gencik M, Borgmann S, Zahn R, Albert E, Sitter T, Epplen JT, et al. Immunogenetic risk factors for anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis. Clin Exp Immunol. 1999;117(2):412–7.

    PubMed  CAS  Google Scholar 

  25. Heckmann M, Holle JU, Arning L, Knaup S, Hellmich B, Nothnagel M, et al. The Wegener's granulomatosis quantitative trait locus on chromosome 6p21.3 as characterised by tagSNP genotyping. Ann Rheum Dis. 2008;67(7):972–9.

    PubMed  CAS  Google Scholar 

  26. Tsuchiya N, Kobayashi S, Hashimoto H, Ozaki S, Tokunaga K. Association of HLA-DRB1*0901-DQB1*0303 haplotype with microscopic polyangiitis in Japanese. Genes Immun [Comp Study Res Support, Non-US Gov't]. 2006;7(1):81–4.

    PubMed  CAS  Google Scholar 

  27. Tsuchiya N, Kobayashi S, Kawasaki A, Kyogoku C, Arimura Y, Yoshida M, et al. Genetic background of Japanese patients with antineutrophil cytoplasmic antibody-associated vasculitis: association of HLA-DRB1*0901 with microscopic polyangiitis. J Rheumatol. 2003;30(7):1534–40.

    PubMed  CAS  Google Scholar 

  28. Vaglio A, Martorana D, Maggiore U, Grasselli C, Zanetti A, Pesci A, et al. HLA-DRB4 as a genetic risk factor for Churg–Strauss syndrome. Arthritis Rheum. 2007;56(9):3159–66.

    PubMed  CAS  Google Scholar 

  29. Wieczorek S, Hellmich B, Gross WL, Epplen JT. Associations of Churg–Strauss syndrome with the HLA-DRB1 locus, and relationship to the genetics of antineutrophil cytoplasmic antibody-associated vasculitides: comment on the article by Vaglio et al. Arthritis Rheum. 2008;58(1):329–30.

    PubMed  CAS  Google Scholar 

  30. Arning L, Holle JU, Harper L, Millar DS, Gross WL, Epplen JT, et al. Are there specific genetic risk factors for the different forms of ANCA-associated vasculitis? Ann Rheum Dis. 2011;70(4):707–8.

    PubMed  Google Scholar 

  31. Cao Y, Schmitz JL, Yang J, Hogan SL, Bunch D, Hu Y, et al. DRB1*15 allele is a risk factor for PR3-ANCA disease in African Americans. J Am Soc Nephrol. 2011;22(6):1161–7.

    PubMed  CAS  Google Scholar 

  32. Jagiello P, Aries P, Arning L, Wagenleiter SE, Csernok E, Hellmich B, et al. The PTPN22 620W allele is a risk factor for Wegener's granulomatosis. Arthritis Rheum. 2005;52(12):4039–43.

    PubMed  CAS  Google Scholar 

  33. Carr EJ, Niederer HA, Williams J, Harper L, Watts RA, Lyons PA, et al. Confirmation of the genetic association of CTLA4 and PTPN22 with ANCA-associated vasculitis. BMC Med Genet. 2009;10:121.

    PubMed  Google Scholar 

  34. Gregersen PK, Lee HS, Batliwalla F, Begovich AB. PTPN22: setting thresholds for autoimmunity. Semin Immunol. 2006;18(4):214–23.

    PubMed  CAS  Google Scholar 

  35. Bluestone JA. Is CTLA-4 a master switch for peripheral T cell tolerance? J Immunol. 1997;158(5):1989–93.

    PubMed  CAS  Google Scholar 

  36. Steiner K, Moosig F, Csernok E, Selleng K, Gross WL, Fleischer B, et al. Increased expression of CTLA-4 (CD152) by T and B lymphocytes in Wegener's granulomatosis. Clin Exp Immunol. 2001;126(1):143–50.

    PubMed  CAS  Google Scholar 

  37. Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev. 2005;204:102–15.

    PubMed  CAS  Google Scholar 

  38. Wang XB, Zhao X, Giscombe R, Lefvert AK. A CTLA-4 gene polymorphism at position -318 in the promoter region affects the expression of protein. Genes Immun. 2002;3(4):233–4.

    PubMed  Google Scholar 

  39. Lee YH, Choi SJ, Ji JD, Song GG. CTLA-4 and TNF-alpha promoter-308 A/G polymorphisms and ANCA-associated vasculitis susceptibility: a meta-analysis. Mol Biol Rep. 2012;39(1):319–26.

    PubMed  CAS  Google Scholar 

  40. Gencik M, Meller S, Borgmann S, Fricke H. Proteinase 3 gene polymorphisms and Wegener's granulomatosis. Kidney Int. 2000;58(6):2473–7.

    PubMed  CAS  Google Scholar 

  41. Halbwachs-Mecarelli L, Bessou G, Lesavre P, Lopez S, Witko-Sarsat V. Bimodal distribution of proteinase 3 (PR3) surface expression reflects a constitutive heterogeneity in the polymorphonuclear neutrophil pool. FEBS. 1995;374:29–33.

    CAS  Google Scholar 

  42. Schreiber A, Busjahn A, Luft FC, Kettritz R. Membrane expression of proteinase 3 is genetically determined. J Am Soc Nephrol. 2003;14(1):68–75.

    PubMed  CAS  Google Scholar 

  43. von Vietinghoff S, Busjahn A, Schonemann C, Massenkeil G, Otto B, Luft FC, et al. Major histocompatibility complex HLA region largely explains the genetic variance exercised on neutrophil membrane proteinase 3 expression. J Am Soc Nephrol. 2006;17(11):3185–91.

    Google Scholar 

  44. Witko-Sarsat V, Lesavre P, Lopez S, Bessou G, Hieblot C, Prum B, et al. A large subset of neutrophils expressing membrane proteinase 3 is a risk factor for vasculitis and rheumatoid arthritis. J Am Soc Nephrol. 1999;10(6):1224–33.

    PubMed  CAS  Google Scholar 

  45. Rarok AA, Stegeman CA, Limburg PC, Kallenberg CG. Neutrophil membrane expression of proteinase 3 (PR3) is related to relapse in PR3-ANCA-associated vasculitis. J Am Soc Nephrol. 2002;13(9):2232–8.

    PubMed  CAS  Google Scholar 

  46. Mahr AD, Edberg JC, Stone JH, Hoffman GS, St Clair EW, Specks U, et al. Alpha 1-antitrypsin deficiency-related alleles Z and S and the risk for Wegener's granulomatosis. Arthritis Rheum. 8 Sep 2010

  47. Morris H, Morgan MD, Wood AM, Smith SW, Ekeowa UI, Herrmann K, et al. ANCA-associated vasculitis is linked to carriage of the Z allele of alpha antitrypsin and its polymers. Ann Rheum Dis. 2011;70(10):1851–6.

    PubMed  CAS  Google Scholar 

  48. Segelmark M, Elzouki AN, Wieslander J, Eriksson S. The PiZ gene of alpha 1-antitrypsin as a determinant of outcome in PR3-ANCA-positive vasculitis. Kidney Int. 1995;48(3):844–50.

    PubMed  CAS  Google Scholar 

  49. Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010;61:437–55.

    PubMed  CAS  Google Scholar 

  50. •• Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DR, et al. Genetically Distinct Subsets within ANCA-Associated Vasculitis. N Engl J Med [Res Support, Non-US Gov't]. 2012;367(3):214–23. First AAV GWAS that confirmed that the pathogenesis of AAV has a genetic component with genetic distinctions between GPA and MPA that are associated with ANCA specificity where the response against the autoantigen PR3 is a central feature of PR3 AAV patients.

    PubMed  CAS  Google Scholar 

  51. Hogan SL, Cooper GS, Savitz DA, Nylander-French LA, Parks CG, Chin H, et al. Association of silica exposure with anti-neutrophil cytoplasmic autoantibody small-vessel vasculitis: a population-based, case-control study. Clin J Am Soc Nephrol. 2007;2(2):290–9.

    PubMed  Google Scholar 

  52. Franchi L, Eigenbrod T, Nunez G. Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol [Res Support, NIH, Extramural Research Support, Non-US Gov't]. 2009;183(2):792–6.

    PubMed  CAS  Google Scholar 

  53. Short AK, Lockwood CM. Antigen specificity in hydralazine associated ANCA positive systemic vasculitis. Q J Med. 1995;88:775–83.

    CAS  Google Scholar 

  54. Choi HK, Merkel PA, Walker AM, Niles JL. Drug-associated antineutrophil cytoplasmic antibody-positive vasculitis: prevalence among patients with high titers of antimyeloperoxidase antibodies. Arthritis Rheum. 2000;43(2):405–13.

    PubMed  CAS  Google Scholar 

  55. Carrington CB, Liebow A. Limited forms of angiitis and granulomatosis of Wegener's type. Am J Med. 1966;41(4):497–527.

    PubMed  CAS  Google Scholar 

  56. Fahey J. E L, J C, GC G. Wegener's Granulomatosis. Am J Med. 1954;17:168–79.

    PubMed  CAS  Google Scholar 

  57. Walton E. Giant-cell granuloma of the respiratory tract (Wegener's granulomatosis). Br Med J. 1958;2:497–527.

    Google Scholar 

  58. Fauci AS, Haynes BF, Katz P, Wolff SM. Wegener's granulomatosis: prospective clinical and therapeutic experience with 85 patients for 21years. Ann Intern Med. 1983;98(1):76–85.

    PubMed  CAS  Google Scholar 

  59. Hoffman GS, Kerr GS, Leavitt RY, Hallahan CW, Lebovics RS, Travis WD, et al. Wegener granulomatosis: an analysis of 158 patients.[see comment]. Ann Intern Med. 1992;116(6):488–98.

    PubMed  CAS  Google Scholar 

  60. Pinching AJ, Rees AJ, Pussell BA, Lockwood CM, Mitchison RS, Peters DK. Relapses in Wegener's granulomatosis: the role of infection. Br Med J. 1980;281(6244):836–8.

    PubMed  CAS  Google Scholar 

  61. Raynauld JP, Bloch DA, Fries JF. Seasonal variation in the onset of Wegener's granulomatosis, polyarteritis nodosa and giant cell arteritis. J Rheumatol. 1993;20(9):1524–6.

    PubMed  CAS  Google Scholar 

  62. Choi HK, Lamprecht P, Niles JL, Gross WL, Merkel PA. Subacute bacterial endocarditis with positive cytoplasmic antineutrophil cytoplasmic antibodies and anti-proteinase 3 antibodies. Arthritis Rheum. 2000;43(1):226–31.

    PubMed  CAS  Google Scholar 

  63. Capizzi SA, Specks U. Does infection play a role in the pathogenesis of pulmonary vasculitis? Semin Respir Infect. 2003;18(1):17–22.

    PubMed  Google Scholar 

  64. Albert LJ, Inman RD. Molecular mimicry and autoimmunity. N Engl J Med. 1999;341(27):2068–74.

    PubMed  CAS  Google Scholar 

  65. Craft J, Fatenejad S. Self antigens and epitope spreading in systemic autoimmunity. Arthritis Rheum. 1997;40:1374–82.

    PubMed  CAS  Google Scholar 

  66. Vanderlugt CJ, Miller SD. Epitope spreading. Curr Opin Immunol. 1996;8:831–6.

    PubMed  CAS  Google Scholar 

  67. Kain R, Exner M, Brandes R, Ziebermayr R, Cunningham D, Alderson CA, et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med. 2008;14(10):1088–96.

    PubMed  CAS  Google Scholar 

  68. Kain R, Tadema H, McKinney EF, Benharkou A, Brandes R, Peschel A, et al. High Prevalence of Autoantibodies to hLAMP-2 in Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis. J Am Soc Nephrol. 2012;23(3):556–66.

    PubMed  CAS  Google Scholar 

  69. Roth AJ, Brown MC, Smith RN, Badhwar AK, Parente O, Chung HC, et al. Anti-LAMP-2 Antibodies Are Not Prevalent in Patients With Antineutrophil Cytoplasmic Autoantibody Glomerulonephritis. J Am Soc Nephrol. 2012;23(3):545–55.

    PubMed  CAS  Google Scholar 

  70. Pendergraft 3rd WF, Preston GA, Shah RR, Tropsha A, Carter Jr CW, Jennette JC, et al. Autoimmunity is triggered by cPR-3(105-201), a protein complementary to human autoantigen proteinase-3. Nat Med. 2004;10(1):72–9.

    PubMed  CAS  Google Scholar 

  71. Shoenfeld Y. Idiotypic induction of autoimmunity: a new aspect of the idiotypic network. FASEB J. 1994;8(15):1296–301.

    PubMed  CAS  Google Scholar 

  72. Astern JM. Myeloperoxidase in vascular disease and autoimmunity. Chapel Hill: University of North Carolina; 2007.

    Google Scholar 

  73. Tadema H, Kallenberg CG, Stegeman CA, Heeringa P. Reactivity against complementary proteinase-3 is not increased in patients with PR3-ANCA-associated vasculitis. PLoS One. 2011;6(3):e17972.

    PubMed  CAS  Google Scholar 

  74. Bautz DJ, Preston GA, Lionaki S, Hewins P, Wolberg AS, Yang JJ, et al. Antibodies with Dual Reactivity to Plasminogen and Complementary PR3 in PR3-ANCA Vasculitis. J Am Soc Nephrol. 13 Aug 2008

  75. Merkel PA, Lo GH, Holbrook JT, Tibbs AK, Allen NB, Davis Jr JC, et al. High incidence of venous thrombotic events among patients with Wegener granulomatosis: the Wegener's Clinical Occurrence of Thrombosis (WeCLOT) Study. Ann Intern Med. 2005;142(8):620–6.

    PubMed  Google Scholar 

  76. Stegeman CA. Cohen Tervaert JW, Sluiter WJ, Manson WL, de Jong PE, Kallenberg CGM. Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. Ann Intern Med. 1994;120:12–7.

    PubMed  CAS  Google Scholar 

  77. Stegeman CA, Cohen Tervaert JW, de Jong PE, Kallenberg CG. Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener's granulomatosis. N Engl J Med. 1996;335(1):16–20.

    PubMed  CAS  Google Scholar 

  78. Zycinska K, Wardyn KA, Zielonka TM, Krupa R, Lukas W. Co-trimoxazole and prevention of relapses of PR3-ANCA positive vasculitis with pulmonary involvement. Eur J Med Res. 2009;14 Suppl 4:265–7.

    PubMed  Google Scholar 

  79. Proft T, Fraser JD. Bacterial superantigens. Clin Exp Immunol. 2003;133(3):299–306.

    PubMed  CAS  Google Scholar 

  80. Zouali M. Exploitation of host signaling pathways by B cell superantigens–potential strategies for developing targeted therapies in systemic autoimmunity. Ann N Y Acad Sci. 2007;1095:342–54.

    PubMed  CAS  Google Scholar 

  81. Popa ER, Stegeman CA, Abdulahad WH, van der Meer B, Arends J, Manson WM, et al. Staphylococcal toxic-shock-syndrome-toxin-1 as a risk factor for disease relapse in Wegener's granulomatosis. Rheumatol (Oxford). 2007;46(6):1029–33.

    CAS  Google Scholar 

  82. Popa ER, Stegeman CA, Bos NA, Kallenberg CG, Tervaert JW. Staphylococcal superantigens and T cell expansions in Wegener's granulomatosis. Clin Exp Immunol. 2003;132(3):496–504.

    PubMed  CAS  Google Scholar 

  83. Li H, Nooh MM, Kotb M, Re F. Commercial peptidoglycan preparations are contaminated with superantigen-like activity that stimulates IL-17 production. J Leukoc Biol. 2008;83(2):409–18.

    PubMed  CAS  Google Scholar 

  84. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007;8(6):639–46.

    PubMed  CAS  Google Scholar 

  85. Gerosa F, Baldani-Guerra B, Lyakh LA, Batoni G, Esin S, Winkler-Pickett RT, et al. Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J Exp Med. 2008;205(6):1447–61.

    PubMed  CAS  Google Scholar 

  86. Fouser LA, Wright JF, Dunussi-Joannopoulos K, Collins M. Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunol Rev. 2008;226:87–102.

    PubMed  CAS  Google Scholar 

  87. Oukka M. Th17 cells in immunity and autoimmunity. Ann Rheum Dis. 2008;67(Suppl 3:iii):26–9.

    Google Scholar 

  88. • Nogueira E, Hamour S, Sawant D, Henderson S, Mansfield N, Chavele KM, et al. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis. Nephrol Dial Transplant. 2010;25(7):2209–17. T cells producing IL-17 (Th17) have been implicated in the pathogenesis of several autoimmune diseases and this study identified that serum IL-17 levels and autoantigen-specific Th17 cells were elevated in patients with active AAV as compared to healthy individuals.

    PubMed  CAS  Google Scholar 

  89. Abdulahad WH, Stegeman CA, Limburg PC, Kallenberg CG. Skewed distribution of Th17 lymphocytes in patients with Wegener's granulomatosis in remission. Arthritis Rheum. 2008;58(7):2196–205.

    PubMed  Google Scholar 

  90. Voswinkel J, Mueller A, Kraemer JA, Lamprecht P, Herlyn K, Holl-Ulrich K, et al. B lymphocyte maturation in Wegener's granulomatosis: a comparative analysis of VH genes from endonasal lesions. Ann Rheum Dis. 2006;65(7):859–64.

    PubMed  CAS  Google Scholar 

  91. Hurtado PR, Jeffs L, Nitschke J, Patel M, Sarvestani G, Cassidy J, et al. CpG oligodeoxynucleotide stimulates production of anti-neutrophil cytoplasmic antibodies in ANCA associated vasculitis. BMC Immunol. 2008;9:34.

    PubMed  Google Scholar 

  92. • Tadema H, Abdulahad WH, Lepse N, Stegeman CA, Kallenberg CG, Heeringa P. Bacterial DNA motifs trigger ANCA production in ANCA-associated vasculitis in remission. Rheumatol (Oxford). 2011;50(4):689–96. This in vitro study showed that bacterial DNA motifs (CpG) trigger the production of ANCA by B lymphocytes in patients with AAV in remission.

    CAS  Google Scholar 

  93. Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol. 2007;5(8):577–82.

    PubMed  CAS  Google Scholar 

  94. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–41.

    PubMed  CAS  Google Scholar 

  95. •• Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15(6):623–5. Neutrophil extracellular traps (NETs) are released by ANCA-stimulated neutrophils in the absence of microbial infection and contain proteinase-3 and myeloperoxidase. Deposition of NETs in inflamed tissue suggest that NET formation triggers vasculitis.

    PubMed  CAS  Google Scholar 

  96. •• Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185(12):7413–25. Neutrophils responded uniquely to Staphylococcus aureus via a novel process of NET formation that did not require neutrophil lysis. S. aureus strongly induce NETs and S. aureus infections are linked to relapses of AAV.

    PubMed  CAS  Google Scholar 

  97. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature. 2002;416(6881):603–7.

    PubMed  CAS  Google Scholar 

  98. • Tadema H, Abdulahad WH, Stegeman CA, Kallenberg CG, Heeringa P. Increased expression of Toll-like receptors by monocytes and natural killer cells in ANCA-associated vasculitis. PLoS One. 2011;6(9):e24315. Toll-like receptors (TLRs) sense pathogen associated patterns and bacterial infections are known to be associated with AAV. In patients with AAV, monocytes and NK cells were shown to have an increased TLR expression probably resulting from increased activation, which could play a role in disease reactivation.

    PubMed  CAS  Google Scholar 

  99. Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363(3):221–32.

    PubMed  CAS  Google Scholar 

  100. Odendahl M, Mei H, Hoyer BF, Jacobi AM, Hansen A, Muehlinghaus G, et al. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood. 2005;105(4):1614–21.

    PubMed  CAS  Google Scholar 

  101. Huang H, Benoist C, Mathis D. Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. Proc Natl Acad Sci U S A. 2010;107(10):4658–63.

    PubMed  CAS  Google Scholar 

  102. Popa ER, Stegeman CA, Bos NA, Kallenberg CG, Tervaert JW. Differential B- and T-cell activation in Wegener's granulomatosis. J Allergy Clin Immunol. 1999;103(5 Pt 1):885–94.

    PubMed  CAS  Google Scholar 

  103. Krumbholz M, Specks U, Wick M, Kalled SL, Jenne D, Meinl E. BAFF is elevated in serum of patients with Wegener's granulomatosis. J Autoimmun. 2005;25(4):298–302.

    PubMed  CAS  Google Scholar 

  104. • Schneeweis C, Rafalowicz M, Feist E, Buttgereit F, Rudolph PE, Burmester GR, et al. Increased levels of BLyS and sVCAM-1 in anti-neutrophil cytoplasmatic antibody (ANCA)-associated vasculitides (AAV). Clin Exp Rheumatol. 2010;28(1 Suppl 57):62–6. Levels of endothelial cell activation (sVCAM-1) were elevated in patients with AAV as compared to healthy controls.

    PubMed  Google Scholar 

  105. Bader L, Koldingsnes W, Nossent J. B-lymphocyte activating factor levels are increased in patients with Wegener's granulomatosis and inversely correlated with ANCA titer. Clin Rheumatol. 2010;29(9):1031–5.

    PubMed  Google Scholar 

  106. Mellbye OJ, Mollnes TE, Steen LS. IgG subclass distribution and complement activation ability of autoantibodies to neutrophil cytoplasmic antigens (ANCA). Clin Immunol Immunopathol. 1994;70(1):32–9.

    PubMed  CAS  Google Scholar 

  107. Cohen Tervaert JW, Mulder L, Stegeman C, Elema J, Huitema M, The H, et al. Occurrence of autoantibodies to human leucocyte elastase in Wegener's granulomatosis and other inflammatory disorders. Ann Rheum Dis. 1993;52:115–20.

    Google Scholar 

  108. Caux C, Dezutter–Dambuyant C, Schmitt D, Bandhereau J. GM-CSF and TNF-a cooperate in the generation of dendritic Langerhans cells. Nature. 1992;360(6401):258–61.

    PubMed  CAS  Google Scholar 

  109. Abdulahad WH, van der Geld YM, Stegeman CA, Kallenberg CG. Persistent expansion of CD4+ effector memory T cells in Wegener's granulomatosis. Kidney Int. 2006;70(5):938–47.

    PubMed  CAS  Google Scholar 

  110. Abdulahad WH, Stegeman CA, van der Geld YM, Doornbos-van der Meer B, Meer B, Limburg PC, et al. Functional defect of circulating regulatory CD4+ T cells in patients with Wegener's granulomatosis in remission. Arthritis Rheum. 2007;56(6):2080–91.

    PubMed  CAS  Google Scholar 

  111. •• Morgan MD, Day CJ, Piper KP, Khan N, Harper L, Moss PA, et al. Patients with Wegener's granulomatosis demonstrate a relative deficiency and functional impairment of T-regulatory cells. Immunology. 2010;130(1):64–73. Immune balance is important in controlling autoimmune diseases and in this study the percentage of regulatory T cells (Foxp3 positive cells) were found to be decreased in patients with GPA as compared to healthy controls. In addition, the percentage of regulatory T cells was found to be inversely related to the rate of disease relapse.

    PubMed  CAS  Google Scholar 

  112. Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nature Immunol Res Support, NIH, Extramural Res Support, Non-US Gov't Rev. 2007;8(4):345–50.

    CAS  Google Scholar 

  113. Abdulahad WH, Stegeman CA, Kallenberg CG. Review article: The role of CD4(+) T cells in ANCA-associated systemic vasculitis. Nephrol (Carlton). 2009;14(1):26–32.

    CAS  Google Scholar 

  114. Ordonez L, Bernard I, L'Faqihi-Olive FE, Tervaert JW, Damoiseaux J, Saoudi A. CD45RC isoform expression identifies functionally distinct T cell subsets differentially distributed between healthy individuals and AAV patients. PloS one [Res Support, Non-US Gov't]. 2009;4(4):e5287.

    PubMed  Google Scholar 

  115. Altmann F, Staudacher E, Wilson IB, Marz L. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J. 1999;16(2):109–23.

    PubMed  CAS  Google Scholar 

  116. Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol. 1998;160(7):3513–21.

    PubMed  CAS  Google Scholar 

  117. Falk RJ, Terrell RS, Charles LA, Jennette JC. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci USA. 1990;87:4115–9.

    PubMed  CAS  Google Scholar 

  118. Csernok E, Ernst M, Schmitt W, Bainton DF, Gross WL. Activated neutrophils express proteinase 3 on their plasma membrane in vitro and in vivo. Clin Exp Immunol. 1994;95(2):244–50.

    PubMed  CAS  Google Scholar 

  119. Franssen CF, Huitema MG, Muller Kobold AC, Oost-Kort WW, Limburg PC, Tiebosch A, et al. In vitro neutrophil activation by antibodies to proteinase 3 and myeloperoxidase from patients with crescentic glomerulonephritis. J Am Soc Nephrol. 1999;10(7):1506–15.

    PubMed  CAS  Google Scholar 

  120. Kettritz R, Jennette JC, Falk RJ. Crosslinking of ANCA-antigens stimulates superoxide release by human neutrophils. J Am Soc Nephrol. 1997;8:386–94.

    PubMed  CAS  Google Scholar 

  121. Weidner S, Neupert W, Goppelt-Struebe M, Rupprecht HD. Antineutrophil cytoplasmic antibodies induce human monocytes to produce oxygen radicals in vitro. Arthritis Rheum. 2001;44(7):1698–706.

    PubMed  CAS  Google Scholar 

  122. Hewins P, Williams JM, Wakelam MJ, Savage CO. Activation of Syk in neutrophils by antineutrophil cytoplasm antibodies occurs via Fcgamma receptors and CD18. J Am Soc Nephrol. 2004;15(3):796–808.

    PubMed  CAS  Google Scholar 

  123. van der Veen BS, Chen M, Muller R, van Timmeren MM, Petersen AH, Lee PA, et al. Effects of p38 mitogen-activated protein kinase inhibition on anti-neutrophil cytoplasmic autoantibody pathogenicity in vitro and in vivo. Ann Rheum Dis. 9 Nov 2010

  124. Radford DJ, Lord JM, Savage CO. The activation of the neutrophil respiratory burst by anti-neutrophil cytoplasm autoantibody (ANCA) from patients with systemic vasculitis requires tyrosine kinases and protein kinase C activation. Clin Exp Immunol. 1999;118(1):171–9.

    PubMed  CAS  Google Scholar 

  125. Mayet WJ, Schwarting A, Orth T, Duchmann R, Buschenfelde KH Mz. Antibodies to proteinase 3 mediate expression of vascular cell adhesion molecule-1 (VCAM-1). Clin Exp Immunol. 1996;103(2):259–67.

    PubMed  CAS  Google Scholar 

  126. De Bandt M, Meyer O, Hakim J, Pasquier C. Antibodies to proteinase-3 mediate expression of intercellular adhesion molecule-1 (ICAM-1, CD 54). Br J Rheumatol. 1997;36(8):839–46.

    PubMed  Google Scholar 

  127. Muller Kobold AC, van Wijk RT, Franssen CF, Molema G, Kallenberg CG, Tervaert JW. In vitro up-regulation of E-selectin and induction of interleukin-6 in endothelial cells by autoantibodies in Wegener's granulomatosis and microscopic polyangiitis. Clin Exp Rheumatol. 1999;17(4):433–40.

    PubMed  CAS  Google Scholar 

  128. Radford DJ, Savage CO, Nash GB. Treatment of rolling neutrophils with antineutrophil cytoplasmic antibodies causes conversion to firm integrin-mediated adhesion. Arthritis Rheum. 2000;43(6):1337–45.

    PubMed  CAS  Google Scholar 

  129. Taekema-Roelvink ME, Kooten C, Kooij SV, Heemskerk E, Daha MR. Proteinase 3 enhances endothelial monocyte chemoattractant protein-1 production and induces increased adhesion of neutrophils to endothelial cells by upregulating intercellular cell adhesion molecule-1. J Am Soc Nephrol. 2001;12(5):932–40.

    PubMed  CAS  Google Scholar 

  130. Casselman BL, Kilgore KS, Miller BF, Warren JS. Antibodies to neutrophil cytoplasmic antigens induce monocyte chemoattractant protein-1 secretion from human monocytes. J Lab Clin Med. 1995;126(5):495–502.

    PubMed  CAS  Google Scholar 

  131. Berger SP, Seelen MAJ, Hiemstra PS, Gerritsma JSJ, Heemskerk E, van der Woude FJ, et al. Proteinase 3, the major autoantigen of Wegener's granulomatosis, enhances IL-8 production by endothelial cells in vitro. J Am Soc Nephrol. 1996;7:694–701.

    PubMed  CAS  Google Scholar 

  132. Brooks CJ, King WJ, Radford DJ, Adu D, McGrath M, Savage COS. IL-1b production by human polymorphonuclear leucocytes stimulated by anti-neutrophil cytoplasmic autoantibodies: relevance to systemic vasculitis. Clin Exp Immunol. 1996;106:273–9.

    PubMed  CAS  Google Scholar 

  133. Ralston DR, Marsh CB, Lowe MP, Wewers MD. Antineutrophil cytoplasmic antibodies induce monocyte IL-8 release. Role of surface proteinase-3, alpha1-antitrypsin, and Fcgamma receptors. J Clin Invest. 1997;100(6):1416–24.

    PubMed  CAS  Google Scholar 

  134. Zhou Z, Dionne A, Richard C, Menard HA. On the origin of surface proteinase 3 of nonmyeloid cells: evidence favoring an exogenous source. Clin Immunol. 2000;97(2):171–81.

    PubMed  CAS  Google Scholar 

  135. Yang JJ, Preston GA, Pendergraft WF, Segelmark M, Heeringa P, Hogan SL, et al. Internalization of proteinase 3 is concomitant with endothelial cell apoptosis and internalization of myeloperoxidase with generation of intracellular oxidants. Am J Pathol. 2001;158(2):581–92.

    PubMed  CAS  Google Scholar 

  136. Brons RH, de Jong MC, de Boer NK, Stegeman CA, Kallenberg CG, Cohen Tervaert JW. Detection of immune deposits in skin lesions of patients with Wegener's granulomatosis. Ann Rheum Dis. 2001;60(12):1097–102.

    PubMed  CAS  Google Scholar 

  137. Haas M, Eustace JA. Immune complex deposits in ANCA-associated crescentic glomerulonephritis: a study of 126 cases. Kidney Int. 2004;65(6):2145–52.

    PubMed  CAS  Google Scholar 

  138. Harper L, Cockwell P, Adu D, Savage CO. Neutrophil priming and apoptosis in anti-neutrophil cytoplasmic autoantibody-associated vasculitis. Kidney Int. 2001;59(5):1729–38.

    PubMed  CAS  Google Scholar 

  139. Harper L, Ren Y, Savill J, Adu D, Savage CO. Antineutrophil cytoplasmic antibodies induce reactive oxygen-dependent dysregulation of primed neutrophil apoptosis and clearance by macrophages. Am J Pathol. 2000;157(1):211–20.

    PubMed  CAS  Google Scholar 

  140. Xiao H, Heeringa P, Hu P, Liu Z, Zhao M, Aratani Y, et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest. 2002;110(7):955–63.

    PubMed  CAS  Google Scholar 

  141. Little MA, Smyth CL, Yadav R, Ambrose L, Cook HT, Nourshargh S, et al. Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo. Blood. 2005;106(6):2050–8.

    PubMed  CAS  Google Scholar 

  142. Pfister H, Ollert M, Frohlich LF, Quintanilla-Martinez L, Colby TV, Specks U, et al. Antineutrophil cytoplasmic autoantibodies against the murine homolog of proteinase 3 (Wegener autoantigen) are pathogenic in vivo. Blood. 2004;104(5):1411–8.

    PubMed  CAS  Google Scholar 

  143. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of multifocal motor neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. J Peripher Nerv Syst. 2006; 11(1):1–8

    Google Scholar 

  144. Haas M, Jafri J, Bartosh SM, Karp SL, Adler SG, Meehan SM. ANCA-associated crescentic glomerulonephritis with mesangial IgA deposits. Am J Kidney Dis. 2000;36(4):709–18.

    PubMed  CAS  Google Scholar 

  145. Mentzel HJ, Neumann T, Fitzek C, Sauner D, Reichenbach JR, Kaiser WA. MR Imaging in Wegener granulomatosis of the spinal cord. AJNR Am J Neuroradiol. 2003;24(1):18–21.

    PubMed  Google Scholar 

  146. Stassen PM, Derks RP, Kallenberg CG, Stegeman CA. Venous thromboembolism in ANCA-associated vasculitis–incidence and risk factors. Rheumatol (Oxford). 2008;47(4):530–4.

    CAS  Google Scholar 

  147. Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. Complement and coagulation: strangers or partners in crime? Trends Immunol [Res Support, NIH, Extramural Research Support, Non-US Gov't Rev]. 2007;28(4):184–92.

    CAS  Google Scholar 

  148. Xiao H, Schreiber A, Heeringa P, Falk RJ, Jennette JC. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am J Pathol. 2007;170(1):52–64.

    PubMed  CAS  Google Scholar 

  149. Huugen D, van Esch A, Xiao H, Peutz-Kootstra CJ, Buurman WA, Tervaert JW, et al. Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int. 2007;71(7):646–54.

    PubMed  CAS  Google Scholar 

  150. Schreiber A, Xiao H, Jennette JC, Schneider W, Luft FC, Kettritz R. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol. 2009;20(2):289–98.

    PubMed  CAS  Google Scholar 

  151. Xing GQ, Chen M, Liu G, Heeringa P, Zhang JJ, Zheng X, et al. Complement activation is involved in renal damage in human antineutrophil cytoplasmic autoantibody associated pauci-immune vasculitis. J Clin Immunol. 2009;29(3):282–91.

    PubMed  CAS  Google Scholar 

  152. Schlieben DJ, Korbet SM, Kimura RE, Schwartz MM, Lewis EJ. Pulmonary-renal syndrome in a newborn with placental transmission of ANCAs. Am J Kidney Dis. 2005;45(4):758–61.

    PubMed  Google Scholar 

  153. Silva F, Specks U, Sethi S, Irazabal MV, Fervenza FC. Successful Pregnancy and Delivery of a Healthy Newborn Despite Transplacental Transfer of Antimyeloperoxidase Antibodies From a Mother With Microscopic Polyangiitis. Am J Kidney Dis. 2009

  154. Sinico RA, Di Toma L, Maggiore U, Tosoni C, Bottero P, Sabadini E, et al. Renal involvement in Churg–Strauss syndrome. Am J Kidney Dis. 2006;47(5):770–9.

    PubMed  Google Scholar 

  155. Finkielman JD, Lee AS, Hummel AM, Viss MA, Jacob GL, Homburger HA, et al. ANCA are detectable in nearly all patients with active severe Wegener's granulomatosis. Am J Med. 2007;120(7):643–14. e9.

    PubMed  Google Scholar 

  156. Finkielman JD, Merkel PA, Schroeder D, Hoffman GS, Spiera R, St Clair EW, et al. Antiproteinase 3 Antineutrophil Cytoplasmic Antibodies and Disease Activity in Wegener Granulomatosis. Ann Intern Med. 2007;147(9):611–9.

    PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported. Dr. Specks is supported by NIH grant U54 AR057319.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Specks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartin-Ceba, R., Peikert, T. & Specks, U. Pathogenesis of ANCA-Associated Vasculitis. Curr Rheumatol Rep 14, 481–493 (2012). https://doi.org/10.1007/s11926-012-0286-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-012-0286-y

Keywords

Navigation