Skip to main content

Advertisement

Log in

Epigenetic Histone Code and Autoimmunity

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

The multiple inter-dependent post-translational modifications of histones represent fine regulators of chromatin dynamics. These covalent modifications, including phosphorylation, acetylation, ubiquitination, deimination, and methylation, affect therefore the numerous processes involving chromatin, such as replication, repair, transcription, genome stability, and cell death. Specific enzymes introducing modified residues in histones are precisely regulated, and a single amino acid residue can be subjected to a single or several, independent modifications. Disruption of histone post-translational modifications perturbs the pattern of gene expression, which may result in disease manifestations. It has become evident in recent years that apoptosis-modified histones exert a central role in the induction of autoimmunity, for example in systemic lupus erythematosus and rheumatoid arthritis. Certain histone post-translational modifications are linked to cell death (apoptotic and non-apoptotic cell death) and might be involved in lupus in the activation of normally tolerant lymphocyte subpopulations. In this review, we discuss how these modifications can affect the antigenicity and immunogenicity of histones with potential consequences in the pathogenesis of autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bhaumik SR, Smith E, Shilatifard A (2007) Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 14:1008–1016

    Article  PubMed  CAS  Google Scholar 

  2. Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8:983–994

    Article  PubMed  CAS  Google Scholar 

  3. Mahler M, Blüthner M, Pollard KM (2003) Advances in B-cell epitope analysis of autoantigens in connective tissue diseases. Clin Immunol 107:65–79

    Article  PubMed  CAS  Google Scholar 

  4. Routsias JG, Tzioufas AG, Moutsopoulos HM (2004) The clinical value of intracellular autoantigens B-cell epitopes in systemic rheumatic diseases. Clin Chim Acta 340:1–25

    Article  PubMed  CAS  Google Scholar 

  5. LeFeber WP, Norris DA, Ryan SR et al (1984) Ultraviolet light induces binding of antibodies to selected nuclear antigens on cultured human keratinocytes. J Clin Invest 74:1545–1551

    Article  PubMed  CAS  Google Scholar 

  6. Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 179:1317–1330

    Article  PubMed  CAS  Google Scholar 

  7. Casiano CA, Tan EM (1996) Recent developments in the understanding of antinuclear autoantibodies. Int Arch Allergy Immunol 111:308–313

    Article  PubMed  CAS  Google Scholar 

  8. Utz PJ, Gensler TJ, Anderson P (2000) Death, autoantigen modifications, and tolerance. Arthritis Res 2:101–114

    Article  PubMed  CAS  Google Scholar 

  9. Rodenburg RJT, Raats HMJ, Pruijn GJM, van Venrooij WJ (2000) Cell death: a trigger of autoimmunity? BioEssay 22:627–636

    Article  CAS  Google Scholar 

  10. Rovere P, Sabbadini MG, Fazzini F et al (2000) Remnants of suicidal cells fostering systemic autoaggression. Apoptosis in the origin and maintenance of autoimmunity. Arthritis Rheum 43:1663–1672

    Article  PubMed  CAS  Google Scholar 

  11. Gaipl US, Kuhn A, Sheriff A et al (2006) Clearance of apoptotic cells in human SLE. Curr Dir Autoimmun 9:173–187

    PubMed  CAS  Google Scholar 

  12. Munoz LE, van Bavel C, Franz S, Berden J, Herrmann M, van der Vlag J (2008) Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus 17:371–375

    Article  PubMed  CAS  Google Scholar 

  13. Dumortier H, Muller S (2007) Histone autoantibodies. In: Shoenfeld Y, Meroni PL, Gershwin E (eds) Textbook of autoantibodies, chapter 22, 2nd edn. Elsevier, Amsterdam, pp 169–176

    Google Scholar 

  14. Cheung WL, Ajiro K, Samejima K et al (2003) Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113:507–517

    Article  PubMed  CAS  Google Scholar 

  15. Monestier M, Fasy TM, Losman MJ, Novick KE, Muller S (1993) Structure and binding properties of monoclonal antibodies to core histones from autoimmune mice. Mol Immunol 30:1069–1075

    Article  PubMed  CAS  Google Scholar 

  16. Monestier M, Decker P, Briand JP, Gabriel JL, Muller S (2000) Molecular and structural properties of three autoimmune IgG monoclonal antibodies to histone H2B. J Biol Chem 275:13558–13563

    Article  PubMed  CAS  Google Scholar 

  17. Fournel S, Muller S (2003) Synthetic peptides in the diagnosis of systemic autoimmune diseases. Curr Prot Peptide Sci 4:261–276

    Article  CAS  Google Scholar 

  18. Lu L, Kaliyaperumal A, Boumpas DT, Datta SK (1999) Major peptide autoepitopes for nucleosome-specific T cells of human lupus. J Clin Invest 104:345–355

    Article  PubMed  CAS  Google Scholar 

  19. Kaliyaperumal A, Mohan C, Wu W, Datta SK (1996) Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus. J Exp Med 183:2459–2469

    Article  PubMed  CAS  Google Scholar 

  20. Sköldberg F, Rönnblom L, Thornemo M et al (2002) Identification of AHNAK as a novel autoantigen in systemic lupus erythematosus. Biochem Biophys Res Commun 291:951–958

    Article  PubMed  CAS  Google Scholar 

  21. Stemmer C, Briand JP, Muller S (1994) Mapping of linear epitopes of human histone H1 recognized by rabbit anti-H1/H5 antisera and antibodies from autoimmune patients. Mol Immunol 31:1037–1046

    Article  PubMed  CAS  Google Scholar 

  22. Dieker JW, Fransen JH, Van Bavel CC et al (2007) Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosus. Arthritis Rheum 56:1921–1933

    Article  PubMed  CAS  Google Scholar 

  23. Batova I, Kowal C, May R, Scharff MD, Diamond B (2008) Human recombinant Fab fragments with sub-nanomolar affinities for acetylated histones. J Immunol Methods 329:1–10

    Article  PubMed  CAS  Google Scholar 

  24. Hu N, Qiu X, Luo Y et al (2008) Abnormal histone modifications patterns in lupus CD4+ T cells. J Rheumatol 35:804–810

    PubMed  CAS  Google Scholar 

  25. Garcia BA, Busby SA, Shabanowitz J, Hunt DF, Mishra N (2005) Resetting the epigenetic histone code in the MRL-lpr/lpr mouse model of lupus by histone acetylase inhibition. J Proteome Res 4:2032–2042

    Article  PubMed  CAS  Google Scholar 

  26. Mishra N, Reilly CM, Brown DR, Ruiz P, Gilkeson GS (2003) Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J Clin Invest 111:539–552

    PubMed  CAS  Google Scholar 

  27. Reilly CM, Mishra N, Miller JM et al (2004) Modulation of renal disease in MRL/lpr mice by suberoylanilide hydroxamic acid. J Immunol 173:4171–4178

    PubMed  CAS  Google Scholar 

  28. Marushige Y, Marushige K (1995) Disappearance of ubiquitinated histone H2A during chromatin condensation in TGF beta 1-induced apoptosis. Anticancer Res 15:267–272

    PubMed  CAS  Google Scholar 

  29. Mimnaugh EG, Kayastha G, McGovern NB et al (2001) Caspase-dependent deubiquitination of monoubiquitinated nucleosomal histone H2A induced by diverse apoptogenic stimuli. Cell Death Differ 8:1182–1196

    Article  PubMed  CAS  Google Scholar 

  30. Plaué S, Muller S, Van Regenmortel MHV (1989) A branched, synthetic octapeptide of ubiquinated histone H2A as target of autoantibodies. J Exp Med 169:1607–1617

    Article  PubMed  Google Scholar 

  31. Muller S, Briand JP, Van Regenmortel MHV (1988) Presence of antibodies to ubiquitin during the autoimmune response associated with systemic lupus erythematosus. Proc Natl Acad Sci USA 85:8176–8180

    Article  PubMed  CAS  Google Scholar 

  32. Ravirajan CT, Kalsi J, Winska-Wiloch H et al (1992) Antigen binding diversity of human hybridoma autoantibodies derived from splenocytes of patients with SLE. Lupus 1:157–165

    Article  PubMed  CAS  Google Scholar 

  33. Stöckl F, Muller S, Batsford S et al (1994) A role for histones and ubiquitin in lupus nephritis? Clin Nephrol 41:10–17

    PubMed  Google Scholar 

  34. Elouaai F, Lule J, Benoist H et al (1994) Autoimmunity to histones, ubiquitin, and ubiquitinated histone H2A in NZB x NZW an MRL-lpr/lpr mice. Anti-histone antibodies are concentrated in glomerular eluates of lupus mice. Nephrol Dialysis Transpl 9:362–366

    CAS  Google Scholar 

  35. Mézière C, Stöckl F, Batsford S, Vogt A, Muller S (1994) Antibodies to DNA, chromatin core particles and histones in mice with graft-versus-host disease and their involvement in glomerular injury. Clin Exp Immunol 98:287–294

    Article  PubMed  Google Scholar 

  36. Reumaux D, Mézière C, Colombel JF, Duthilleul P, Muller S (1995) Distinct production of antibodies to nuclear components in ulcerative colitis and Crohn’s disease. Clin Immunol Immunopathol 77:349–357

    Article  PubMed  CAS  Google Scholar 

  37. Kanai Y, Kawaminami Y, Miwa M et al (1977) naturally-occurring antibodies to poly(ADP-ribose) in patients with systemic lupus erythematosus. Nature 265:175–177

    Article  PubMed  CAS  Google Scholar 

  38. Muller S, Briand JP, Barakat S et al (1994) Autoantibodies reacting with poly(ADP-ribose) and with a zinc-finger functional domain of poly(ADP-ribose)polymerase involved in the recognition of damaged DNA. Clin Immunol Immunopathol 73:187–196

    Article  PubMed  CAS  Google Scholar 

  39. Decker P, Briand JP, De Murcia G, Pero RW, Isenberg DA, Muller S (1998) Zinc is an essential co-factor for recognition of the DNA-binding domain of poly(ADP-ribose) polymerase by antibodies in autoimmune rheumatic and bowel diseases. Arthritis Rheum 41:918–926

    Article  PubMed  CAS  Google Scholar 

  40. Thibeault L, Hengartner M, Lagueux J, Poirier G, Muller S (1992) Rearrangement of the nucleosome structure in chromatin by poly (ADP-ribose). Biochim Biophys Acta 1121:317–324

    PubMed  CAS  Google Scholar 

  41. Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25:1106–1118

    Article  PubMed  CAS  Google Scholar 

  42. Schellekens GA, de Jong BA, van den Hoogen FH, van de Putte LB, van Venrooij WJ (1998) Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 101:273–281

    Article  PubMed  CAS  Google Scholar 

  43. Girbal-Neuhauser E, Durieux JJ, Arnaud M et al (1999) The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J Immunol 162:585–594

    PubMed  CAS  Google Scholar 

  44. Masson-Bessière C, Sebbag M, Girbal-Neuhauser E et al (2001) The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J Immunol 166:4177–4184

    PubMed  Google Scholar 

  45. Cuthbert GL, Daujat S, Snowden AW et al (2004) Histone deimination antagonizes arginine methylation. Cell 118:545–553

    Article  PubMed  CAS  Google Scholar 

  46. Wang Y, Wysocka J, Sayegh J et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283

    Article  PubMed  CAS  Google Scholar 

  47. Wang Y, Li M, Stadler S et al (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184:205–213

    Article  PubMed  CAS  Google Scholar 

  48. Neeli I, Khan SN, Radic M (2008) Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol 180:1895–1902

    PubMed  CAS  Google Scholar 

  49. Brahms H, Raymackers J, Union A, de Keyser F, Meheus L, Lührmann R (2000) The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J Biol Chem 275:17122–17129

    Article  PubMed  CAS  Google Scholar 

  50. Mahler M, Stinton LM, Fritzler MJ (2005) Improved serological differentiation between systemic lupus erythematosus and mixed connective tissue disease by use of an SmD3 peptide-based immunoassay. Clin Diagn Lab Immunol 12:107–113

    PubMed  CAS  Google Scholar 

  51. Mahler M, Fritzler MJ, Blüthner M (2005) Identification of a SmD3 epitope with a single symmetrical dimethylation of an arginine residue as a specific target of a subpopulation of anti-Sm antibodies. Arthritis Res Ther 7:R19–R29

    Article  PubMed  CAS  Google Scholar 

  52. Piacentini M, Colizzi V (1999) Tissue transglutaminase: apoptosis versus autoimmunity. Immunol Today 20:130–134

    Article  PubMed  CAS  Google Scholar 

  53. Khan MA, Dixit K, Jabeen S, Moinuddin AK (2009) Impact of peroxynitrite modification on structure and immunogenicity of H2A histone. Scand J Immunol 69:99–109

    Article  PubMed  CAS  Google Scholar 

  54. Young GW, Hoofring SA, Mamula MJ et al (2005) Structural integrity of histone H2B in vivo requires the activity of protein L-isoaspartate O-methyltransferase, a putative protein repair enzyme. J Biol Chem 280:26094–26098

    Article  PubMed  CAS  Google Scholar 

  55. Muller S, Isabey A, Couppez M, Plaué S, Sommermeyer G, Van Regenmortel MHV (1987) Specificity of antibodies raised against triacetylated histone H4. Mol Immunol 24:779–789

    Article  PubMed  CAS  Google Scholar 

  56. Kuo WN, Kreahling JM, Shanbhag VP, Shanbhag PP, Mewar M (2000) Protein nitration. Mol Cell Biochem 214:121–129

    Article  PubMed  CAS  Google Scholar 

  57. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8:279–289

    Article  PubMed  CAS  Google Scholar 

  58. Urbonaviciute V, Fürnrohr BG, Meister S et al (2008) Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med 205:3007–3018

    Article  PubMed  CAS  Google Scholar 

  59. Dieker JW, van der Vlag J, Berden JH (2002) Triggers for anti-chromatin autoantibody production in SLE. Lupus 11:856–864

    Article  PubMed  CAS  Google Scholar 

  60. Arnheim N, Calabrese P (2009) Understanding what determines the frequency and pattern of human germline mutations. Nat Rev Genet 10:478–488

    Article  PubMed  CAS  Google Scholar 

  61. Barros SP, Offenbacher S (2009) Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 88:400–408

    Article  PubMed  CAS  Google Scholar 

  62. Figueiredo LM, Cross GA, Janzen CJ (2009) Epigenetic regulation in African trypanosomes: a new kid on the block. Nat Rev Microbiol 7:504–513

    Article  PubMed  CAS  Google Scholar 

  63. Hewagama A, Richardson B (2009) The genetics and epigenetics of autoimmune diseases. J Autoimmun 33:3–11

    Article  PubMed  CAS  Google Scholar 

  64. Invernizzi P (2009) Future directions in genetic for autoimmune diseases. J Autoimmun 33:1–2

    Article  PubMed  CAS  Google Scholar 

  65. Invernizzi P, Pasini S, Selmi C, Gershwin ME, Podda M (2009) Female predominance and X chromosome defects in autoimmune diseases. J Autoimmun 33:12–16

    Article  PubMed  CAS  Google Scholar 

  66. Larizza D, Calcaterra V, Martinetti M (2009) Autoimmune stigmata in Turner syndrome: when lacks an X chromosome. J Autoimmun 33:25–30

    Article  PubMed  CAS  Google Scholar 

  67. Persani L, Rossetti R, Cacciatore C, Bonomi M (2009) Primary Ovarian Insufficiency: X chromosome defects and autoimmunity. J Autoimmun 33:35–41

    Article  PubMed  CAS  Google Scholar 

  68. Sawalha AH, Harley JB, Scofield RH (2009) Autoimmunity and Klinefelter's syndrome: when men have two X chromosomes. J Autoimmun 33:31–34

    Article  PubMed  CAS  Google Scholar 

  69. Wells AD (2009) New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J Immunol 182:7331–7341

    Article  PubMed  CAS  Google Scholar 

  70. Zernicka-Goetz M, Morris SA, Bruce AW (2009) Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 10:467–477

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French Centre National de la Recherche Scientifique (CNRS). JD was supported by a post-doctoral fellowship from CNRS and the French Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylviane Muller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dieker, J., Muller, S. Epigenetic Histone Code and Autoimmunity. Clinic Rev Allerg Immunol 39, 78–84 (2010). https://doi.org/10.1007/s12016-009-8173-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-009-8173-7

Keywords

Navigation