Skip to main content

Advertisement

Log in

Pharmacogenetics and pharmacogenomics in rheumatology

  • Treatment of Autoimmunity
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Pharmacogenetics and pharmacogenomics deal with possible associations of a single genetic polymorphism or those of multiple gene profiles with responses to drugs. In rheumatology, genes and gene signatures may be associated with altered efficacy and/or safety of anti-inflammatory drugs, disease-modifying antirheumatic drugs (DMARDs) and biologics. In brief, genes of cytochrome P450, other enzymes involved in drug metabolism, transporters and some cytokines have been associated with responses to and toxicity of non-steroidal anti-inflammatory drugs, corticosteroids and DMARDs. The efficacy of biologics may be related to alterations in cytokine, chemokine and FcγR genes. Numerous studies reported multiple genetic signatures in association with responses to biologics; however, data are inconclusive. More, focused studies carried out in larger patient cohorts, using pre-selected genes, may be needed in order to determine the future of pharmacogenetics and pharmacogenomics as tools for personalized medicine in rheumatology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alamanos Y, Drosos AA. Epidemiology of adult rheumatoid arthritis. Autoimmun Rev. 2005;4(3):130–6.

    Article  PubMed  Google Scholar 

  2. Smolen JS, Landewe R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2010;69(6):964–75.

    Article  PubMed  CAS  Google Scholar 

  3. Raza K, Buckley CE, Salmon M, Buckley CD. Treating very early rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2006;20(5):849–63.

    Article  PubMed  CAS  Google Scholar 

  4. Smolen JS, Landewe R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2010;69:964–75.

    Article  PubMed  CAS  Google Scholar 

  5. Smolen JS, Aletaha D, Bijlsma JW, Breedveld FC, Boumpas D, Burmester G, et al. Treating rheumatoid arthritis to target: recommendations of an international task force. Ann Rheum Dis. 2010;69(4):631–7.

    Article  PubMed  Google Scholar 

  6. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis. 2010;69(9):1580–8.

    Article  PubMed  Google Scholar 

  7. Smolen JS, Landewe R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2010;69(6):964–75.

    Article  PubMed  CAS  Google Scholar 

  8. Felson DT, Smolen JS, Wells G, Zhang B, van Tuyl LH, Funovits J, et al. American College of Rheumatology/European League against rheumatism provisional definition of remission in rheumatoid arthritis for clinical trials. Ann Rheum Dis. 2011;70(3):404–13.

    Article  PubMed  Google Scholar 

  9. de Vries RR, van der Woude D, Houwing JJ, Toes RE. Genetics of ACPA-positive rheumatoid arthritis: the beginning of the end? Ann Rheum Dis. 2011;70(Suppl 1):i51–4.

    Article  PubMed  Google Scholar 

  10. Szodoray P, Szabo Z, Kapitany A, Gyetvai A, Lakos G, Szanto S, et al. Anti-citrullinated protein/peptide autoantibodies in association with genetic and environmental factors as indicators of disease outcome in rheumatoid arthritis. Autoimmun Rev. 2010;9(3):140–3.

    Article  PubMed  CAS  Google Scholar 

  11. Daha NA, Toes RE. Rheumatoid arthritis: are ACPA-positive and ACPA-negative RA the same disease? Nat Rev Rheumatol. 2011;7(4):202–3.

    Article  PubMed  Google Scholar 

  12. Lundstrom E, Kallberg H, Smolnikova M, Ding B, Ronnelid J, Alfredsson L, et al. Opposing effects of HLA-DRB1*13 alleles on the risk of developing anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum. 2009;60(4):924–30.

    Article  PubMed  Google Scholar 

  13. Laki J, Lundstrom E, Snir O, Ronnelid J, Ganji I, Catrina AI, et al. Very high levels of anti-citrullinated protein antibodies are associated with HLA-DRB1*15 non-shared epitope allele in patients with rheumatoid arthritis. Arthritis Rheum. 2012;64(7):2078–84.

    Article  PubMed  CAS  Google Scholar 

  14. n Mil AH, Wesoly JZ, Huizinga TW. Understanding the genetic contribution to rheumatoid arthritis. Curr Opin Rheumatol. 2005;17(3):299–304.

    Article  Google Scholar 

  15. van der Helm-van AH, Toes REM, Huizinga TW. Genetic variants in the prediction of rheumatoid arthritis. Ann Rheum Dis. 2010;69(9):1694–6.

    Article  Google Scholar 

  16. Cronstein BN. Pharmacogenetics in the rheumatic diseases, from pret-a-porter to haute couture. Nat Clin Pract Rheumatol. 2006;2(1):2–3.

    Article  PubMed  CAS  Google Scholar 

  17. Ranganathan P. Pharmacogenomics in rheumatoid arthritis. Methods Mol Biol. 2008;448:413–35.

    Article  PubMed  CAS  Google Scholar 

  18. Davila L, Ranganathan P. Pharmacogenetics: implications for therapy in rheumatic diseases. Nat Rev Rheumatol. 2011;7(9):537–50.

    Article  PubMed  CAS  Google Scholar 

  19. Verweij CL. Pharmacogenetics: anti-TNF therapy in RA—towards personalized medicine? Nat Rev Rheumatol. 2011;7(3):136–8.

    Article  PubMed  CAS  Google Scholar 

  20. Roses AD. Pharmacogenetics. Hum Mol Genet. 2001;10(20):2261–7.

    Article  PubMed  CAS  Google Scholar 

  21. Emery P, Dorner T. Optimising treatment in rheumatoid arthritis: a review of potential biological markers of response. Ann Rheum Dis. 2011;70(12):2063–70.

    Article  PubMed  CAS  Google Scholar 

  22. Miossec P, Verweij CL, Klareskog L, Pitzalis C, Barton A, Lekkerkerker F, et al. Biomarkers and personalised medicine in rheumatoid arthritis: a proposal for interactions between academia, industry and regulatory bodies. Ann Rheum Dis. 2011;70(10):1713–8.

    Article  PubMed  CAS  Google Scholar 

  23. Stamer UM, Zhang L, Stuber F. Personalized therapy in pain management: where do we stand? Pharmacogenomics. 2010;11(6):843–64.

    Article  PubMed  CAS  Google Scholar 

  24. Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics. 2002;3(2):229–43.

    Article  PubMed  CAS  Google Scholar 

  25. Xie HG, Prasad HC, Kim RB, Stein CM. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev. 2002;54(10):1257–70.

    Article  PubMed  CAS  Google Scholar 

  26. van Kalken CK, Broxterman HJ, Pinedo HM, Feller N, Dekker H, Lankelma J, et al. Cortisol is transported by the multidrug resistance gene product P-glycoprotein. Br J Cancer. 1993;67(2):284–9.

    Article  PubMed  Google Scholar 

  27. Daniel F, Loriot MA, Seksik P, Cosnes J, Gornet JM, Lemann M, et al. Multidrug resistance gene-1 polymorphisms and resistance to cyclosporine A in patients with steroid resistant ulcerative colitis. Inflamm Bowel Dis. 2007;13(1):19–23.

    Article  PubMed  Google Scholar 

  28. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97(7):3473–8.

    Article  PubMed  CAS  Google Scholar 

  29. Wasilewska A, Zalewski G, Chyczewski L, Zoch-Zwierz W. MDR-1 gene polymorphisms and clinical course of steroid-responsive nephrotic syndrome in children. Pediatr Nephrol. 2007;22(1):44–51.

    Article  PubMed  Google Scholar 

  30. Borowski LC, Lopes RP, Gonzalez TP, Dummer LA, Chies JA, Silveira IG, et al. Is steroid resistance related to multidrug resistance-I (MDR-I) in rheumatoid arthritis? Int Immunopharmacol. 2007;7(6):836–44.

    Article  PubMed  CAS  Google Scholar 

  31. Richaud-Patin Y, Vega-Boada F, Vidaller A, Llorente L. Multidrug resistance-1 (MDR-1) in autoimmune disorders IV. P-glycoprotein overfunction in lymphocytes from myasthenia gravis patients. Biomed Pharmacother. 2004;58(5):320–4.

    Article  PubMed  CAS  Google Scholar 

  32. Llorente L, Richaud-Patin Y, Diaz-Borjon A. Alvarado de la Barrera C, Jakez-Ocampo J, de la Fuente H, et al. Multidrug resistance-1 (MDR-1) in rheumatic autoimmune disorders. Part I: increased P-glycoprotein activity in lymphocytes from rheumatoid arthritis patients might influence disease outcome. Joint Bone Spine. 2000;67(1):30–9.

    PubMed  CAS  Google Scholar 

  33. Davila L, Ranganathan P. Pharmacogenetics: implications for therapy in rheumatic diseases. Nat Rev Rheumatol. 2011;7(9):537–50.

    Article  PubMed  CAS  Google Scholar 

  34. Ulrich CM, Yasui Y, Storb R, Schubert MM, Wagner JL, Bigler J, et al. Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood. 2001;98(1):231–4.

    Article  PubMed  CAS  Google Scholar 

  35. Toffoli G, Veronesi A, Boiocchi M, Crivellari D. MTHFR gene polymorphism and severe toxicity during adjuvant treatment of early breast cancer with cyclophosphamide, methotrexate, and fluorouracil (CMF). Ann Oncol. 2000;11(3):373–4.

    Article  PubMed  CAS  Google Scholar 

  36. van Ede AE, Laan RF, Blom HJ, Huizinga TW, Haagsma CJ, Giesendorf BA, et al. The C677T mutation in the methylenetetrahydrofolate reductase gene: a genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients. Arthritis Rheum. 2001;44(11):2525–30.

    Article  PubMed  Google Scholar 

  37. Lee YH, Song GG. Associations between the C677T and A1298C polymorphisms of MTHFR and the efficacy and toxicity of methotrexate in rheumatoid arthritis: a meta-analysis. Clin Drug Investig. 2010;30(2):101–8.

    Article  PubMed  CAS  Google Scholar 

  38. van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998;62(5):1044–51.

    Article  PubMed  Google Scholar 

  39. Berkun Y, Levartovsky D, Rubinow A, Orbach H, Aamar S, Grenader T, et al. Methotrexate related adverse effects in patients with rheumatoid arthritis are associated with the A1298C polymorphism of the MTHFR gene. Ann Rheum Dis. 2004;63(10):1227–31.

    Article  PubMed  CAS  Google Scholar 

  40. Kang SS, Wong PW, Zhou JM, Sora J, Lessick M, Ruggie N, et al. Thermolabile methylenetetrahydrofolate reductase in patients with coronary artery disease. Metabolism. 1988;37(7):611–3.

    Article  PubMed  CAS  Google Scholar 

  41. Kang SS, Zhou J, Wong PW, Kowalisyn J, Strokosch G. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet. 1988;43(4):414–21.

    PubMed  CAS  Google Scholar 

  42. Urano W, Taniguchi A, Yamanaka H, Tanaka E, Nakajima H, Matsuda Y, et al. Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharmacogenetics. 2002;12(3):183–90.

    Article  PubMed  CAS  Google Scholar 

  43. De Mattia E, Toffoli G. C677T and A1298C MTHFR polymorphisms, a challenge for antifolate and fluoropyrimidine-based therapy personalisation. Eur J Cancer. 2009;45(8):1333–51.

    Article  PubMed  Google Scholar 

  44. Friedman G, Goldschmidt N, Friedlander Y, Ben-Yehuda A, Selhub J, Babaey S, et al. A common mutation A1298C in human methylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate concentrations. J Nutr. 1999;129(9):1656–61.

    PubMed  CAS  Google Scholar 

  45. Palomino-Morales R, Gonzalez-Juanatey C, Vazquez-Rodriguez TR, Rodriguez L, Miranda-Filloy JA, Fernandez-Gutierrez B, et al. A1298C polymorphism in the MTHFR gene predisposes to cardiovascular risk in rheumatoid arthritis. Arthritis Res Ther. 2010;12(2):R71.

    Article  PubMed  Google Scholar 

  46. Rothem L, Aronheim A, Assaraf YG. Alterations in the expression of transcription factors and the reduced folate carrier as a novel mechanism of antifolate resistance in human leukemia cells. J Biol Chem. 2003;278(11):8935–41.

    Article  PubMed  CAS  Google Scholar 

  47. Dervieux T, Furst D, Lein DO, Capps R, Smith K, Walsh M, et al. Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum. 2004;50(9):2766–74.

    Article  PubMed  CAS  Google Scholar 

  48. Dervieux T, Kremer J, Lein DO, Capps R, Barham R, Meyer G, et al. Contribution of common polymorphisms in reduced folate carrier and gamma-glutamyl hydrolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis. Pharmacogenetics. 2004;14(11):733–9.

    Article  PubMed  CAS  Google Scholar 

  49. Pawlik A, Wrzesniewska J, Fiedorowicz-Fabrycy I, Gawronska-Szklarz B. The MDR1 3435 polymorphism in patients with rheumatoid arthritis. Int J Clin Pharmacol Ther. 2004;42(9):496–503.

    PubMed  CAS  Google Scholar 

  50. Horie N, Aiba H, Oguro K, Hojo H, Takeishi K. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct. 1995;20(3):191–7.

    Article  PubMed  CAS  Google Scholar 

  51. Ranganathan P, Culverhouse R, Marsh S, Mody A, Scott-Horton TJ, Brasington R, et al. Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis. J Rheumatol. 2008;35(4):572–9.

    PubMed  CAS  Google Scholar 

  52. Kumagai K, Hiyama K, Oyama T, Maeda H, Kohno N. Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int J Mol Med. 2003;11(5):593–600.

    PubMed  CAS  Google Scholar 

  53. Takatori R, Takahashi KA, Tokunaga D, Hojo T, Fujioka M, Asano T, et al. ABCB1 C3435T polymorphism influences methotrexate sensitivity in rheumatoid arthritis patients. Clin Exp Rheumatol. 2006;24(5):546–54.

    PubMed  CAS  Google Scholar 

  54. Dervieux T, Furst D, Lein DO, Capps R, Smith K, Caldwell J, et al. Pharmacogenetic and metabolite measurements are associated with clinical status in patients with rheumatoid arthritis treated with methotrexate: results of a multicentred cross sectional observational study. Ann Rheum Dis. 2005;64(8):1180–5.

    Article  PubMed  CAS  Google Scholar 

  55. Tolusso B, Pietrapertosa D, Morelli A, De Santis M, Gremese E, Farina G, et al. IL-1B and IL-1RN gene polymorphisms in rheumatoid arthritis: relationship with protein plasma levels and response to therapy. Pharmacogenomics. 2006;7(5):683–95.

    Article  PubMed  CAS  Google Scholar 

  56. Kumagai S, Komada F, Kita T, Morinobu A, Ozaki S, Ishida H, et al. N-acetyltransferase 2 genotype-related efficacy of sulfasalazine in patients with rheumatoid arthritis. Pharm Res. 2004;21(2):324–9.

    Article  PubMed  CAS  Google Scholar 

  57. Tanaka E, Taniguchi A, Urano W, Nakajima H, Matsuda Y, Kitamura Y, et al. Adverse effects of sulfasalazine in patients with rheumatoid arthritis are associated with diplotype configuration at the N-acetyltransferase 2 gene. J Rheumatol. 2002;29(12):2492–9.

    PubMed  CAS  Google Scholar 

  58. Cohen SB, Iqbal I. Leflunomide. Int J Clin Pract. 2003;57(2):115–20.

    PubMed  CAS  Google Scholar 

  59. Lennard L, Van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther. 1989;46(2):149–54.

    Article  PubMed  CAS  Google Scholar 

  60. Lennard L, Lilleyman JS. Individualizing therapy with 6-mercaptopurine and 6-thioguanine related to the thiopurine methyltransferase genetic polymorphism. Ther Drug Monit. 1996;18(4):328–34.

    Article  PubMed  CAS  Google Scholar 

  61. Clunie GP, Lennard L. Relevance of thiopurine methyltransferase status in rheumatology patients receiving azathioprine. Rheumatology. 2004;43(1):13–8.

    Article  PubMed  CAS  Google Scholar 

  62. Bonhomme-Faivre L, Devocelle A, Saliba F, Chatled S, Maccario J, Farinotti R, et al. MDR-1 C3435T polymorphism influences cyclosporine a dose requirement in liver-transplant recipients. Transplantation. 2004;78(1):21–5.

    Article  PubMed  CAS  Google Scholar 

  63. van Vollenhoven RF. Switching between anti-tumour necrosis factors: trying to get a handle on a complex issue. Ann Rheum Dis. 2007;66(7):849–51.

    Article  PubMed  Google Scholar 

  64. Radstake TR, Petit E, Pierlot C, van de Putte LB, Cornelis F, Barrera P. Role of Fcgamma receptors IIA, IIIA, and IIIB in susceptibility to rheumatoid arthritis. J Rheumatol. 2003;30(5):926–33.

    PubMed  CAS  Google Scholar 

  65. Sfar I, Dhaouadi T, Habibi I, Abdelmoula L, Makhlouf M, Ben Romdhane T, et al. Functional polymorphisms of PTPN22 and FcgR genes in Tunisian patients with rheumatoid arthritis. Arch Inst Pasteur Tunis. 2009;86(1–4):51–62.

    PubMed  CAS  Google Scholar 

  66. Tutuncu Z, Kavanaugh A, Zvaifler N, Corr M, Deutsch R, Boyle D. Fcgamma receptor type IIIA polymorphisms influence treatment outcomes in patients with inflammatory arthritis treated with tumor necrosis factor alpha-blocking agents. Arthritis Rheum. 2005;52(9):2693–6.

    Article  PubMed  CAS  Google Scholar 

  67. Coulthard LR, Taylor JC, Eyre S, Robinson JI, Wilson AG, Isaacs JD, et al. Genetic variants within the MAP kinase signalling network and anti-TNF treatment response in rheumatoid arthritis patients. Ann Rheum Dis. 2010;70(1):98–103.

    Article  PubMed  Google Scholar 

  68. Ruyssen-Witrand A, Rouanet S, Combe B, Dougados M, Le Loet X, Sibilia J, et al. Fcgamma receptor type IIIA polymorphism influences treatment outcomes in patients with rheumatoid arthritis treated with rituximab. Ann Rheum Dis. 2012;71(6):875–7.

    Article  PubMed  CAS  Google Scholar 

  69. Fabris M, Quartuccio L, Lombardi S, Saracco M, Atzeni F, Carletto A, et al. The CC homozygosis of the -174G>C IL-6 polymorphism predicts a lower efficacy of rituximab therapy in rheumatoid arthritis. Autoimmun Rev. 2010;11(5):315–20.

    Article  PubMed  Google Scholar 

  70. Gragnani L, Piluso A, Giannini C, Caini P, Fognani E, Monti M, et al. Genetic determinants in hepatitis C virus-associated mixed cryoglobulinemia: role of polymorphic variants of BAFF promoter and Fcgamma receptors. Arthritis Rheum. 2011;63(5):1446–51.

    Article  PubMed  CAS  Google Scholar 

  71. Danila MI, Hughes LB, Bridges SL. Pharmacogenetics of etanercept in rheumatoid arthritis. Pharmacogenomics. 2008;9(8):1011–5.

    Article  PubMed  CAS  Google Scholar 

  72. Koczan D, Drynda S, Hecker M, Drynda A, Guthke R, Kekow J, et al. Molecular discrimination of responders and nonresponders to anti-TNF alpha therapy in rheumatoid arthritis by etanercept. Arthritis Res Ther. 2008;10(3):R50.

    Article  PubMed  Google Scholar 

  73. Padyukov L, Lampa J, Heimburger M, Ernestam S, Cederholm T, Lundkvist I, et al. Genetic markers for the efficacy of tumour necrosis factor blocking therapy in rheumatoid arthritis. Ann Rheum Dis. 2003;62(6):526–9.

    Article  PubMed  CAS  Google Scholar 

  74. Julia A, Erra A, Palacio C, Tomas C, Sans X, Barcelo P, et al. An eight-gene blood expression profile predicts the response to infliximab in rheumatoid arthritis. PLoS One. 2009;4(10):e7556.

    Article  PubMed  Google Scholar 

  75. Lequerre T, Gauthier-Jauneau AC, Bansard C, Derambure C, Hiron M, Vittecoq O, et al. Gene profiling in white blood cells predicts infliximab responsiveness in rheumatoid arthritis. Arthritis Res Ther. 2006;8(4):R105.

    Article  PubMed  Google Scholar 

  76. Sekiguchi N, Kawauchi S, Furuya T, Inaba N, Matsuda K, Ando S, et al. Messenger ribonucleic acid expression profile in peripheral blood cells from RA patients following treatment with an anti-TNF-alpha monoclonal antibody, infliximab. Rheumatology. 2008;47(6):780–8.

    Article  PubMed  CAS  Google Scholar 

  77. Mugnier B, Balandraud N, Darque A, Roudier C, Roudier J, Reviron D. Polymorphism at position -308 of the tumor necrosis factor alpha gene influences outcome of infliximab therapy in rheumatoid arthritis. Arthritis Rheum. 2003;48(7):1849–52.

    Article  PubMed  CAS  Google Scholar 

  78. Plant D, Bowes J, Potter C, Hyrich KL, Morgan AW, Wilson AG, et al. Genome-wide association study of genetic predictors of anti-tumor necrosis factor treatment efficacy in rheumatoid arthritis identifies associations with polymorphisms at seven loci. Arthritis Rheum. 2011;63(3):645–53.

    Article  PubMed  CAS  Google Scholar 

  79. Verweij CL. Pharmacogenetics: anti-TNF therapy in RA–towards personalized medicine? Nat Rev Rheumatol. 2011;7(3):136–8.

    Article  PubMed  CAS  Google Scholar 

  80. Coulthard LR, Taylor JC, Eyre S, Robinson JI, Wilson AG, Isaacs JD, et al. Genetic variants within the MAP kinase signalling network and anti-TNF treatment response in rheumatoid arthritis patients. Ann Rheum Dis. 2011;70(1):98–103.

    Article  PubMed  Google Scholar 

  81. Potter C, Cordell HJ, Barton A, Daly AK, Hyrich KL, Mann DA, et al. Association between anti-tumour necrosis factor treatment response and genetic variants within the TLR and NFκB signalling pathways. Ann Rheum Dis. 2010;69(7):1315–20.

    Article  PubMed  CAS  Google Scholar 

  82. Potter C, Hyrich KL, Tracey A, Lunt M, Plant D, Symmons DP, et al. Association of rheumatoid factor and anti-cyclic citrullinated peptide positivity, but not carriage of shared epitope or PTPN22 susceptibility variants, with anti-tumour necrosis factor response in rheumatoid arthritis. Ann Rheum Dis. 2009;68(1):69–74.

    Article  PubMed  CAS  Google Scholar 

  83. Raterman HG, Vosslamber S, de Ridder S, Nurmohamed MT, Lems WF, Boers M, et al. The interferon type I signature towards prediction of non-response to rituximab in rheumatoid arthritis patients. Arthritis Res Ther. 2012;14(2):R95.

    Article  PubMed  CAS  Google Scholar 

  84. Mesko B, Poliska S, Szamosi S, Szekanecz Z, Podani J, Varadi C, et al. Peripheral blood gene expression and IgG glycosylation profiles as markers of tocilizumab treatment in rheumatoid arthritis. J Rheumatol. 2012;39(5):916–28.

    Article  PubMed  CAS  Google Scholar 

  85. Mattey DL, Brownfield A, Dawes PT. Relationship between pack-year history of smoking and response to tumor necrosis factor antagonists in patients with rheumatoid arthritis. J Rheumatol. 2009;36(6):1180–7.

    Article  PubMed  Google Scholar 

  86. Mesko B, Poliska S, Nagy L. Gene expression profiles in peripheral blood for the diagnosis of autoimmune diseases. Trends Mol Med. 2011;17(4):223–33.

    Article  PubMed  CAS  Google Scholar 

  87. Mesko B, Poliska S, Szegedi A, Szekanecz Z, Palatka K, Papp M, et al. Peripheral blood gene expression patterns discriminate among chronic inflammatory diseases and healthy controls and identify novel targets. BMC Med Genomics. 2010;3:15.

    Article  PubMed  Google Scholar 

  88. Marsal S, Julia A. Rheumatoid arthritis pharmacogenomics. Pharmacogenomics. 2010;11(5):617–9.

    Article  PubMed  CAS  Google Scholar 

  89. Filkova M, Jungel A, Gay RE, Gay S. MicroRNAs in rheumatoid arthritis: potential role in diagnosis and therapy. BioDrugs. 2012;26(3):131–41.

    Article  PubMed  CAS  Google Scholar 

  90. Tzvetkov M, von Ahsen N. Pharmacogenetic screening for drug therapy: from single gene markers to decision making in the next generation sequencing era. Pathology. 2012;44(2):166–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants ETT 315/2009 from the Medical Research Council of Hungary (Z.S.); OTKA K 105073 from the National Scientific Research Fund of Hungary (Z.S.), Grants WS1695414 and WS1695450 by Pfizer (Z.S.), Grant AR059356 (T.T.G.), and by the TÁMOP 4.2.1/B-09/1/KONV-2010-0007 and 4.2.2.A-1/11/KONV-2012-0031 projects co-financed by the European Union and the European Social Fund (Z.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Szekanecz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szekanecz, Z., Meskó, B., Poliska, S. et al. Pharmacogenetics and pharmacogenomics in rheumatology. Immunol Res 56, 325–333 (2013). https://doi.org/10.1007/s12026-013-8405-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8405-z

Keywords

Navigation