Skip to main content
Log in

Influence of Sex and Race on Mycophenolic Acid Pharmacokinetics in Stable African American and Caucasian Renal Transplant Recipients

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

No evaluation of sex and race influences on mycophenolic acid (MPA) pharmacokinetics and adverse effects (AEs) during enteric-coated mycophenolate sodium (ECMPS) and tacrolimus immunosuppression are available. The primary objective of this study was to investigate the influence of sex and race on MPA and MPA glucuronide (MPAG) pharmacokinetics in stable renal transplant recipients receiving ECMPS and tacrolimus

Methods

The pharmacokinetics of MPA and MPAG and their associated gastrointestinal AEs were investigated in 67 stable renal transplant recipients: 22 African American males (AAMs), 13 African American females (AAFs), 16 Caucasian males (CMs), and 16 Caucasian females (CFs) receiving ECMPS and tacrolimus. A validated gastrointestinal AE rating included diarrhea, dyspepsia, vomiting, and acid-suppressive therapy was completed. Apparent clearance, clearance normalized to body mass index (BMI), area under the concentration–time curve from time zero to 12 h (AUC12) and dose-normalized AUC12 (AUC*) were determined using a statistical model that incorporated gastrointestinal AE and clinical covariates.

Results

Males had more rapid apparent MPA clearance (CMs 13.8 ± 6.27 L/h vs. AAMs 10.2 ± 3.73 L/h) than females (CFs 8.70 ± 3.33 L/h and AAFs 9.71 ± 3.94 L/h; p = 0.014) with a race–sex interaction (p = 0.043). Sex differences were observed in MPA clearance/BMI (p = 0.033) and AUC* (p = 0.033). MPA AUC12 was greater than 60 mg·h/L in 57 % of renal transplant recipients (RTR) with 71 % of patients demonstrating gastrointestinal AEs and a higher score noted in females. In all patients, females exhibited 1.40-fold increased gastrointestinal AE scores compared with males (p = 0.024). Race (p = 0.044) and sex (p = 0.005) differences were evident with greater MPAG AUC12 in AAFs and CFs.

Conclusion

Sex and race differences were evident, with females having slower MPA clearance, higher MPAG AUC12, and more severe gastrointestinal AEs. These findings suggest sex and race should be considered during MPA immunosuppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–58. doi:10.2165/00003088-200746010-00002.

    Article  CAS  PubMed  Google Scholar 

  2. Budde K, Durr M, Liefeldt L, Neumayer HH, Glander P. Enteric-coated mycophenolate sodium. Expert Opin Drug Saf. 2010;9(6):981–94. doi:10.1517/14740338.2010.513379.

    Article  CAS  PubMed  Google Scholar 

  3. Mycophenolate mofetil in renal transplantation: 3-year results from the placebo-controlled trial. European Mycophenolate Mofetil Cooperative Study Group. Transplantation. 1999;68(3):391–6.

  4. Staatz CE, Tett SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol. 2014;88(7):1351–89. doi:10.1007/s00204-014-1247-1.

    Article  CAS  PubMed  Google Scholar 

  5. Budde K, Bauer S, Hambach P, Hahn U, Roblitz H, Mai I, et al. Pharmacokinetic and pharmacodynamic comparison of enteric-coated mycophenolate sodium and mycophenolate mofetil in maintenance renal transplant patients. Am J Transplant. 2007;7(4):888–98. doi:10.1111/j.1600-6143.2006.01693.x.

    Article  CAS  PubMed  Google Scholar 

  6. Budde K, Glander P, Kramer BK, Fischer W, Hoffmann U, Bauer S, et al. Conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in maintenance renal transplant recipients receiving tacrolimus: clinical, pharmacokinetic, and pharmacodynamic outcomes. Transplantation. 2007;83(4):417–24. doi:10.1097/01.tp.0000251969.72691.ea.

    Article  PubMed  Google Scholar 

  7. Cooper MSM, Budde K, Oppenheimer F, Sollinger H, Zeier M. Enteric coated mycophenolate sodium immunosuppression in renal transplant patients: efficacy and dosing. Transplant Rev. 2012;26:233–40.

    Article  Google Scholar 

  8. Ortega F, Sanchez-Fructuoso A, Cruzado JM, Gomez-Alamillo JC, Alarcon A, Pallardo L, et al. Gastrointestinal quality of life improvement of renal transplant recipients converted from mycophenolate mofetil to enteric-coated mycophenolate sodium drugs or agents: mycophenolate mofetil and enteric-coated mycophenolate sodium. Transplantation. 2011;92(4):426–32. doi:10.1097/TP.0b013e31822527ca.

    Article  PubMed  Google Scholar 

  9. Machnicki G, Ricci JF, Brennan DC, Schnitzler MA. Economic impact and long-term graft outcomes of mycophenolate mofetil dosage modifications following gastrointestinal complications in renal transplant recipients. Pharmacoeconomics. 2008;26(11):951–67.

    Article  PubMed  Google Scholar 

  10. Langone A, Doria C, Greenstein S, Narayanan M, Ueda K, Sankari B, et al. Does reduction in mycophenolic acid dose compromise efficacy regardless of tacrolimus exposure level? An analysis of prospective data from the Mycophenolic Renal Transplant (MORE) Registry. Clin Transplant. 2013;27(1):15–24. doi:10.1111/j.1399-0012.2012.01694.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Borrows R, Chusney G, Loucaidou M, James A, Lee J, Tromp JV, et al. Mycophenolic acid 12-h trough level monitoring in renal transplantation: association with acute rejection and toxicity. Am J Transplant. 2006;6(1):121–8. doi:10.1111/j.1600-6143.2005.01151.x.

    Article  CAS  PubMed  Google Scholar 

  12. Tett SE, St Marcoux F, Staatz CE, Brunet M, Vinks AA, Miura M, Kuypers DR, van Gelder T, Cattaneo D. Mycophenolate, clinical pharmacokinetics,formulations and methods for assessing drug exposure. Transplant Rev. 2011;25:47–57.

    Article  Google Scholar 

  13. van Hest RM, Mathot RA, Pescovitz MD, Gordon R, Mamelok RD, van Gelder T. Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: a population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J Am Soc Nephrol. 2006;17(3):871–80. doi:10.1681/asn.2005101070.

    Article  PubMed  Google Scholar 

  14. Kuypers DRJLY, Cantarovich M, Tredger MJ, Tett SE, Cattaneo D, Tonshoff B, Holt DW, Chapman J, van Gelder T. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. Clin J Am Soc Nephrol. 2010;5:341–58.

    Article  CAS  PubMed  Google Scholar 

  15. Shaw LM, Korecka M, Venkataramanan R, Goldberg L, Bloom R, Brayman KL. Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transplant. 2003;3(5):534–42.

    Article  CAS  PubMed  Google Scholar 

  16. Tornatore KM, Sudchada P, Dole K, DiFrancesco R, Leca N, Gundroo AC, et al. Mycophenolic acid pharmacokinetics during maintenance immunosuppression in African American and Caucasian renal transplant recipients. J Clin Pharmacol. 2011;51(8):1213–22. doi:10.1177/0091270010382909.

    Article  CAS  PubMed  Google Scholar 

  17. Tornatore KM, Sudchada P, Attwood K, Wilding GE, Gundroo AC, DiFrancesco R, et al. Race and drug formulation influence on mycophenolic acid pharmacokinetics in stable renal transplant recipients. J Clin Pharmacol. 2013;53(3):285–93. doi:10.1177/0091270012447814.

    Article  PubMed  Google Scholar 

  18. Shaw LM, Korecka M, Aradhye S, Grossman R, Bayer L, Innes C, et al. Mycophenolic acid area under the curve values in African American and Caucasian renal transplant patients are comparable. J Clin Pharmacol. 2000;40(6):624–33.

    Article  CAS  PubMed  Google Scholar 

  19. Pescovitz MD, Guasch A, Gaston R, Rajagopalan P, Tomlanovich S, Weinstein S, et al. Equivalent pharmacokinetics of mycophenolate mofetil in African-American and Caucasian male and female stable renal allograft recipients. Am J Transplant. 2003;3(12):1581–6.

    Article  CAS  PubMed  Google Scholar 

  20. Huang SM, Temple R. Is this the drug or dose for you? Impact and consideration of ethnic factors in global drug development, regulatory review, and clinical practice. Clin Pharmacol Ther. 2008;84(3):287–94. doi:10.1038/clpt.2008.144.

    Article  PubMed  Google Scholar 

  21. Chen ML. Ethnic or racial differences revisited: impact of dosage regimen and dosage form on pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2006;45(10):957–64. doi:10.2165/00003088-200645100-00001.

    Article  CAS  PubMed  Google Scholar 

  22. Food and Drug Administration 21 CFR Parts 312 and 314. 1998. http://www.gpo.gov/fdsys/pkg/FR-1998-02-11/html/98-3422.htm. Accessed 23 June 2014.

  23. Coakley M, Fadiran EO, Parrish LJ, Griffith RA, Weiss E, Carter C. Dialogues on diversifying clinical trials: successful strategies for engaging women and minorities in clinical trials. J Women’s Health (2002). 2012;21(7):713–6.

    Article  Google Scholar 

  24. Hesselink DA, van Hest RM, Mathot RA, Bonthuis F, Weimar W, de Bruin RW, et al. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am J Transplant. 2005;5(5):987–94. doi:10.1046/j.1600-6143.2005.00779.x.

    Article  CAS  PubMed  Google Scholar 

  25. Grinyo JM, Ekberg H, Mamelok RD, Oppenheimer F, Sanchez-Plumed J, Gentil MA, et al. The pharmacokinetics of mycophenolate mofetil in renal transplant recipients receiving standard-dose or low-dose cyclosporine, low-dose tacrolimus or low-dose sirolimus: the Symphony pharmacokinetic substudy. Nephrol Dial Transplant. 2009;24(7):2269–76. doi:10.1093/ndt/gfp162.

    Article  CAS  PubMed  Google Scholar 

  26. Naesens M, Kuypers DR, Verbeke K, Vanrenterghem Y. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation. 2006;82(8):1074–84. doi:10.1097/01.tp.0000235533.29300.e7.

    Article  CAS  PubMed  Google Scholar 

  27. Zucker KTA, Olson L, Esquenazi V, Tzakis A, Miller J. Evidence that tacrolimus augments the bioavailability of mycophenolate mofetil through the inhibition of mycophenolic acid glucuronidation. Ther Drug Monit. 1999;21(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  28. Organ Procurement and Transplantation Network and Scientific Registry of Transplant Recipients 2010 data report. Am J Transplant. 2012;12 Suppl 1:1–156. doi:10.1111/j.1600-6143.2011.03886.x.

  29. Meaney CJ, Arabi Z, Venuto RC, Consiglio JD, Wilding GE, Tornatore KM. Validity and reliability of a novel immunosuppressive adverse effects scoring system in renal transplant recipients. BMC Nephrol. 2014;15:88. doi:10.1186/1471-2369-15-88.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Difrancesco R, Frerichs V, Donnelly J, Hagler C, Hochreiter J, Tornatore KM. Simultaneous determination of cortisol, dexamethasone, methylprednisolone, prednisone, prednisolone, mycophenolic acid and mycophenolic acid glucuronide in human plasma utilizing liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2007;859(1):42–51. doi:10.1016/j.jchromb.2007.09.003.

    Article  CAS  Google Scholar 

  31. Sollinger HW, Deierhoi MH, Belzer FO, Diethelm AG, Kauffman RS. RS-61443–a phase I clinical trial and pilot rescue study. Transplantation. 1992;53(2):428–32.

    Article  CAS  PubMed  Google Scholar 

  32. Roberts MS, Magnusson BM, Burczynski FJ, Weiss M. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet. 2002;41(10):751–90. doi:10.2165/00003088-200241100-00005.

    Article  CAS  PubMed  Google Scholar 

  33. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–70.

    Article  CAS  PubMed  Google Scholar 

  34. Kuypers DR, Claes K, Evenepoel P, Maes B, Vanrenterghem Y. Clinical efficacy and toxicity profile of tacrolimus and mycophenolic acid in relation to combined long-term pharmacokinetics in de novo renal allograft recipients. Clin Pharmacol Ther. 2004;75(5):434–47. doi:10.1016/j.clpt.2003.12.009.

    Article  CAS  PubMed  Google Scholar 

  35. de Jonge H, Naesens M, Kuypers DR. New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: possible consequences for therapeutic drug monitoring in solid organ transplantation. Ther Drug Monit. 2009;31(4):416–35. doi:10.1097/FTD.0b013e3181aa36cd.

    Article  PubMed  Google Scholar 

  36. Johnston A, He X, Holt DW. Bioequivalence of enteric-coated mycophenolate sodium and mycophenolate mofetil: a meta-analysis of three studies in stable renal transplant recipients. Transplantation. 2006;82(11):1413–8. doi:10.1097/01.tp.0000242137.68863.89.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson HJ, Swan SK, Heim-Duthoy KL, Nicholls AJ, Tsina I, Tarnowski T. The pharmacokinetics of a single oral dose of mycophenolate mofetil in patients with varying degrees of renal function. Clin Pharmacol Ther. 1998;63(5):512–8. doi:10.1016/s0009-9236(98)90102-3.

    Article  CAS  PubMed  Google Scholar 

  38. Schwartz JB. The influence of sex on pharmacokinetics. Clin Pharmacokinet. 2003;42(2):107–21. doi:10.2165/00003088-200342020-00001.

    Article  CAS  PubMed  Google Scholar 

  39. Mulder GJ. Sex differences in drug conjugation and their consequences for drug toxicity. Sulfation, glucuronidation and glutathione conjugation. Chem Biol Interact. 1986;57(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  40. Morissette P, Albert C, Busque S, St-Louis G, Vinet B. In vivo higher glucuronidation of mycophenolic acid in male than in female recipients of a cadaveric kidney allograft and under immunosuppressive therapy with mycophenolate mofetil. Ther Drug Monit. 2001;23(5):520–5.

    Article  CAS  PubMed  Google Scholar 

  41. Staatz CE, Duffull SB, Kiberd B, Fraser AD, Tett SE. Population pharmacokinetics of mycophenolic acid during the first week after renal transplantation. Eur J Clin Pharmacol. 2005;61(7):507–16. doi:10.1007/s00228-005-0927-4.

    Article  CAS  PubMed  Google Scholar 

  42. Le Guellec C, Bourgoin H, Buchler M, Le Meur Y, Lebranchu Y, Marquet P, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in stable renal transplant patients. Clin Pharmacokinet. 2004;43(4):253–66. doi:10.2165/00003088-200443040-00004.

    Article  PubMed  Google Scholar 

  43. Kobayashi M, Saitoh H, Tadano K, Takahashi Y, Hirano T. Cyclosporin A, but not tacrolimus, inhibits the biliary excretion of mycophenolic acid glucuronide possibly mediated by multidrug resistance-associated protein 2 in rats. J Pharmacol Exp Ther. 2004;309(3):1029–35. doi:10.1124/jpet.103.063073.

    Article  CAS  PubMed  Google Scholar 

  44. Cattaneo D, Merlini S, Zenoni S, Baldelli S, Gotti E, Remuzzi G, et al. Influence of co-medication with sirolimus or cyclosporine on mycophenolic acid pharmacokinetics in kidney transplantation. Am J Transplant. 2005;5(12):2937–44. doi:10.1111/j.1600-6143.2005.01107.x.

    Article  CAS  PubMed  Google Scholar 

  45. Hohage H, Zeh M, Heck M, Gerhardt UW, Welling U, Suwelack BM. Differential effects of cyclosporine and tacrolimus on mycophenolate pharmacokinetics in patients with impaired kidney function. Transpl Proc. 2005;37(4):1748–50. doi:10.1016/j.transproceed.2005.03.078.

    Article  CAS  Google Scholar 

  46. Hesselink DA, van Gelder T. Genetic and nongenetic determinants of between-patient variability in the pharmacokinetics of mycophenolic acid. Clin Pharmacol Ther. 2005;78(4):317–21. doi:10.1016/j.clpt.2005.06.008.

    Article  CAS  PubMed  Google Scholar 

  47. Hoffmann U, Kroemer HK. The ABC transporters MDR1 and MRP2: multiple functions in disposition of xenobiotics and drug resistance. Drug Metab Rev. 2004;36(3–4):669–701. doi:10.1081/dmr-200033473.

    Article  CAS  PubMed  Google Scholar 

  48. van Gelder T, Klupp J, Barten MJ, Christians U, Morris RE. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther Drug Monit. 2001;23(2):119–28.

    Article  PubMed  Google Scholar 

  49. Sherwin CM, Fukuda T, Brunner HI, Goebel J, Vinks AA. The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease. Clin Pharmacokinet. 2011;50(1):1–24. doi:10.2165/11536640-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  50. Ekberg H, Tedesco-Silva H, Demirbas A, Vitko S, Nashan B, Gurkan A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med. 2007;357(25):2562–75. doi:10.1056/NEJMoa067411.

    Article  CAS  PubMed  Google Scholar 

  51. Le Meur Y, Buchler M, Thierry A, Caillard S, Villemain F, Lavaud S, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant. 2007;7(11):2496–503. doi:10.1111/j.1600-6143.2007.01983.x.

    Article  PubMed  Google Scholar 

  52. Gaston RS, Kaplan B, Shah T, Cibrik D, Shaw LM, Angelis M, et al. Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the Opticept trial. Am J Transplant. 2009;9(7):1607–19. doi:10.1111/j.1600-6143.2009.02668.x.

    Article  CAS  PubMed  Google Scholar 

  53. van Gelder T, Silva HT, de Fijter JW, Budde K, Kuypers D, Tyden G, et al. Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation. 2008;86(8):1043–51. doi:10.1097/TP.0b013e318186f98a.

    Article  PubMed  Google Scholar 

  54. Bunnapradist S, Ambuhl PM. Impact of gastrointestinal-related side effects on mycophenolate mofetil dosing and potential therapeutic strategies. Clin Transplant. 2008;22(6):815–21. doi:10.1111/j.1399-0012.2008.00892.x.

    Article  PubMed  Google Scholar 

  55. Arns W. Noninfectious gastrointestinal (GI) complications of mycophenolic acid therapy: a consequence of local GI toxicity? Transpl Proc. 2007;39(1):88–93. doi:10.1016/j.transproceed.2006.10.189.

    Article  CAS  Google Scholar 

  56. Franconi F Campesi I, Occhioni S, Antonini P, Murphy MF. Sex and gender in adverse drug events, addiction, and placebo. Handb Exp Pharmacol. 2012;(214):107–26.

  57. Drug safety: most drugs withdrawn in recent years had greater health risks for women. U.S. Government Accountability Office. 2001 Jan 19. http://www.gao.gov/assets/100/90642.pdf. Accessed 23 June 2014.

Download references

Acknowledgments

Dr. Meaney was an Immunosuppressive Pharmacology Fellow in the Immunosuppressive Pharmacology Research Program at the School of Pharmacy and Pharmaceutical Sciences and New York State Center of Excellence for Bioinformatics and Life Sciences during this research project. Dr. Chang was an ECRIP Transplant Fellow in the UB Department of Medicine, Nephrology Division during this research study. Dr. Shin was a Doctor of Pharmacy Student during this research project.

The assistance of the following individuals is greatly appreciated: Lisa Venuto, PA, Brenda Pawl, LPN, and Ellen Kendricks, RN from Erie County Medical Center and Renal Division.

This study was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) ARRA R21: DK077325-01A1 (KMT-PI) and an Investigator Initiated Research Grant (KMT-PI) from Novartis Pharmaceuticals.

Statement of competing financial interests

The authors of this manuscript have no conflicts of interest or financial relationships to disclose relating to the time this study was ongoing.

Authors contributions

KMT designed the study and obtained funding. KMT, RCV, SSC, AG, and VG enrolled patients. KMT, RCV, SSC, AG, LMC, and VG conducted the studies with some assistance from CJM. KMT, LMC, KC, JP, and GJF conducted the MPA and MPAG sample analysis and quality control review. KMT, CJM, LMC, and KS completed the pharmacokinetic analysis, data summaries, and quality control review. Statistical analysis was completed by GEW. KMT, CJM, RCV, and GEW collaborated on manuscript preparation. All authors reviewed and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Tornatore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tornatore, K.M., Meaney, C.J., Wilding, G.E. et al. Influence of Sex and Race on Mycophenolic Acid Pharmacokinetics in Stable African American and Caucasian Renal Transplant Recipients. Clin Pharmacokinet 54, 423–434 (2015). https://doi.org/10.1007/s40262-014-0213-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0213-7

Keywords

Navigation