Skip to main content
Log in

Protecting Bone Health in Pediatric Rheumatic Diseases: Pharmacological Considerations

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Bone health in children with rheumatic conditions may be compromised due to several factors related to the inflammatory disease state, delayed puberty, altered life style, including decreased physical activities, sun avoidance, suboptimal calcium and vitamin D intake, and medical treatments, mainly glucocorticoids and possibly some disease-modifying anti-rheumatic drugs. Low bone density or even fragility fractures could be asymptomatic; therefore, children with diseases of high inflammatory load, such as systemic onset juvenile idiopathic arthritis, juvenile dermatomyositis, systemic lupus erythematosus, and those requiring chronic glucocorticoids may benefit from routine screening of bone health. Most commonly used assessment tools are laboratory testing including serum 25-OH-vitamin D measurement and bone mineral density measurement by a variety of methods, dual-energy X-ray absorptiometry as the most widely used. Early disease control, use of steroid-sparing medications such as disease-modifying anti-rheumatic drugs and biologics, supplemental vitamin D and calcium, and promotion of weight-bearing physical activities can help optimize bone health. Additional treatment options for osteoporosis such as bisphosphonates are still controversial in children with chronic rheumatic diseases, especially those with decreased bone density without fragility fractures. This article reviews common risk factors leading to compromised bone health in children with chronic rheumatic diseases and discusses the general approach to prevention and treatment of bone fragility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from Boyce and Xing [21] with permission

Similar content being viewed by others

References

  1. Rousseau-Nepton I, Lang B, Rodd C. Long-term bone health in glucocorticoid-treated children with rheumatic diseases. Curr Rheumatol Rep. 2013;15:315–22.

    Article  PubMed  CAS  Google Scholar 

  2. von Scheven E, Corbin KJ, et al. Glucocorticoid-associated osteoporosis in chronic inflammatory diseases: epidemiology, mechanisms, diagnosis, and treatment. Curr Osteoporos Rep. 2014;12:289–99.

    Article  Google Scholar 

  3. Roth J, Bechtold S, et al. Osteoporosis in juvenile idiopathic arthritis—a practical approach to diagnosis and therapy. Eur J Pediatr. 2007;166:775–84.

    Article  PubMed  Google Scholar 

  4. Lilleby V. Bone status in juvenile systemic lupus erythematosus. Lupus. 2007;16:580–6.

    Article  CAS  PubMed  Google Scholar 

  5. Golden NH, Abrams SA, Committee on Nutrition. Optimizing bone health in children and adolescents. Pediatrics. 2014;134:e1229–43.

    Article  PubMed  Google Scholar 

  6. Bianchi ML. Osteoporosis in children and adolescents. Bone. 2007;41:486–95.

    Article  PubMed  Google Scholar 

  7. NIH Consensus Development Panel on Osteoporosis Prevention. Diagnosis, and Therapy. NIH consensus development panel on osteoporosis prevention, diagnosis and treatment. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

    Article  Google Scholar 

  8. Siris ES, Adler R, et al. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int. 2014. doi:10.1007/s00198-014-2655-z.

    Google Scholar 

  9. Ray NF, Chan JK, et al. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res. 1997;12:24–35.

    Article  CAS  PubMed  Google Scholar 

  10. Bishop N, Arundel P, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: The ISCD 2013 pediatric official positions. J Clin Densitom. 2014;17(2):275–80. doi:10.1016/j.jocd.2014.01.004.

    Article  PubMed  Google Scholar 

  11. Boreham CAG, McKay HA. Physical activity in childhood and bone health. Br J Sports Med. 2011;45:877–9.

    Article  PubMed  Google Scholar 

  12. Alsufyani KA, Ortiz-Alvarez O, et al. Bone mineral density in children and adolescents with systemic lupus erythematosus, juvenile dermatomyositis, and systemic vasculitis: relationship to disease duration, cumulative corticosteroid dose, calcium intake, and exercise. J Rheumatol. 2005;32(4):729–33.

    CAS  PubMed  Google Scholar 

  13. Compeyrot-Lacassagne S, Tyrrell PN, et al. Prevalence and etiology of low bone mineral density in juvenile systemic lupus erythematosus. Arthritis Rheum. 2007;56(6):1966–73.

    Article  PubMed  Google Scholar 

  14. Trapani S, Civinini R, et al. Osteoporosis in juvenile systemic lupus erythematosus: a longitudinal study on the effect of steroids on bone mineral density. Rheumatol Int. 1998;18(2):45–9.

    Article  CAS  PubMed  Google Scholar 

  15. Lien G, Flato B, et al. Frequency of osteopenia in adolescents with early-onset juvenile idiopathic arthritis. Arthritis Rheum. 2003;48:2214–23.

    Article  PubMed  Google Scholar 

  16. Roth J, Palm C, et al. Musculoskeletal abnormalities of the forearm in patients with juvenile idiopathic arthritis relate mainly to bone geometry. Arthritis Rheum. 2004;50:1277–85.

    Article  PubMed  Google Scholar 

  17. Romas E, Gillespie MT. Inflammation-induced bone loss: can it be prevented? Rheum Dis Clin N Am. 2006;32:759–73.

    Article  Google Scholar 

  18. Nakhla M, Scuccimarri R, et al. Prevalence of vertebral fractures in children with chronic rheumatic diseases at risk for osteopenia. J Pediatr. 2009;154:438–43.

    Article  PubMed  Google Scholar 

  19. Romas E, Gillespie MT, Martin TJ. Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone. 2002;30(2):340–6.

    Article  CAS  PubMed  Google Scholar 

  20. Maricic M. Update on glucocorticoid-induced osteoporosis. Rheum Dis Clin N Am. 2011;37:415–31.

    Article  Google Scholar 

  21. Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9(Suppl 1):S1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Devogelaer JP. Glucocorticoid-induced osteoporosis: mechanisms and therapeutic approach. Rheum Dis Clin N Am. 2006;32:733–57.

    Article  Google Scholar 

  23. Silva I, Branco JC. Rank/Rankl/OPG: literature review. Acta Reumatol Port. 2011;36:209–18.

    CAS  PubMed  Google Scholar 

  24. Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA. 2004;292:490–5.

    Article  CAS  PubMed  Google Scholar 

  25. Kitaura H, Zhou P, et al. M-CSF mediates TNF-induced inflammatory osteolysis. J Clin Investig. 2005;115:3418–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kutukculer N, Caglayan S, Aydogdu F. Study of proinflammatory (TNF-alpha, IL-1 alpha, IL-6) and T-cell-derived (IL-2, IL-4) cytokines in plasma and synovial fluid of patients with juvenile chronic arthritis: Correlations with clinical and laboratory parameters. Clin Rheumatol. 1998;17:288–92.

    Article  CAS  PubMed  Google Scholar 

  27. Wilkinson N, Jackson G, Gardner-Medwin J. Biologic therapies for juvenile arthritis. Arch Dis Child. 2003;88:186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grottrup-Wolfers E, Moeller J, et al. Elevated cell-associated levels of interleukin 1beta and interleukin 6 in inflamed mucosa of inflammatory bowel disease. Eur J Clin Investig. 1996;26:115–22.

    Article  CAS  Google Scholar 

  29. Reimund JM, Wittersheim C, et al. Increased production of tumour necrosis factor-alpha interleukin-1 beta, and interleukin-6 by morphologically normal intestinal biopsies from patients with Crohn’s disease. Gut. 1996;39:684–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Investig. 2006;116:1186–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davies UM, Rooney M, et al. Treatment of growth-retardation in juvenile chronic arthritis with recombinant human growth-hormone. J Rheumatol. 1994;21:153–8.

    CAS  PubMed  Google Scholar 

  32. De Benedetti F, Rucci N, et al. Impaired skeletal development in interleukin-6-transgenic mice. Arthritis Rheumatol. 2006;54(11):3551–63.

    Article  CAS  Google Scholar 

  33. De Benedetti F, Brunner H, et al. Catch-up growth during tocilizumab therapy for systemic juvenile idiopathic arthritis: results from a phase III trial. Arthritis Rheumatol. 2015;67(3):840–8.

    Article  PubMed  CAS  Google Scholar 

  34. MacRae VE, Wong SC, et al. Cytokine profiling and in vitro studies of murine bone growth using biological fluids from children with juvenile idiopathic arthritis. Clin Endocrinol. 2007;67:442–8.

    Article  CAS  Google Scholar 

  35. Pablo P, Cooper MS, Buckley CD. Association between bone mineral density and C-reactive protein in a large population-based sample. Arthritis Rheumatol. 2012;64(8):2624–31.

    Article  CAS  Google Scholar 

  36. Nakamura K, Saito T, et al. C-reactive protein predicts incident fracture in community-dwelling elderly Japanese women: the Muramatsu study. Osteoporos Int. 2011;22:2145–50.

    Article  CAS  PubMed  Google Scholar 

  37. Ahmadi-Abhari S, Luben RN, et al. C-reactive protein and fracture risk: European Prospective Investigation into Cancer Norfolk Study. Bone. 2013;56:67–72.

    Article  CAS  PubMed  Google Scholar 

  38. Berglundh S, Malmgren L, et al. C-reactive protein, bone loss, fracture, and mortality in elderly women: a longitudinal study in the OPRA cohort. Osteoporos Int. 2015;26:727–35.

    Article  CAS  PubMed  Google Scholar 

  39. Sponholtz TR, Zhang X, et al. Association between inflammatory biomarkers and bone mineral density in a community-based cohort of men and women: The Framingham Osteoporosis Study. Arthritis Care Res (Hoboken). 2014;66(8):1233–40.

    Article  CAS  Google Scholar 

  40. Ganesan K, Teklehaimanot S, et al. Relationship of C-reactive protein and bone mineral density in community-dwelling elderly females. J Natl Med Assoc. 2005;97(3):329–33.

    PubMed  PubMed Central  Google Scholar 

  41. Pereira RMR, Corrente JE, et al. Evaluation by dual X-ray absorptiometry (DXA) of bone mineral density in children with juvenile chronic arthritis. Clin Exp Rheum. 1998;16:495–501.

    CAS  Google Scholar 

  42. Lilleby V, Lien G, et al. Frequency of osteopenia in children and young adults with childhood-onset systemic lupus erythematosus. Arthritis Rheum. 2005;52:2051–9.

    Article  PubMed  Google Scholar 

  43. Kanis JA, Johansson H, et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res. 2004;19(6):893–9.

    Article  PubMed  Google Scholar 

  44. van Staa TP, Cooper C, et al. Children and the risk of fractures caused by oral corticosteroids. J Bone Miner Res. 2003;18(5):913–8.

    Article  PubMed  Google Scholar 

  45. Hofbauer LC, Gori F, et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology. 1999;140(10):4382–9.

    Article  CAS  Google Scholar 

  46. Sasaki N, Kusano E, et al. Glucocorticoid decreases circulating osteoprotegerin (OPG): possible mechanism for glucocorticoid induced osteoporosis. Nephrol Dial Transplant. 2001;16(3):479–82.

    Article  CAS  PubMed  Google Scholar 

  47. von Tirpitz C, Epp S, et al. Effect of systemic glucocorticoid therapy on bone metabolism and the osteoprotegerin system in patients with active Crohn’s disease. Eur J Gastroenterol Hepatol. 2003;15(11):1165–70.

    Article  Google Scholar 

  48. Hahn TJ, Boisseau VC, Avioli LV. Effect of chronic corticosteroid administration on diaphyseal and metaphyseal bone mass. J Clin Endocrinol Metab. 1974;39(2):274–82.

    Article  CAS  PubMed  Google Scholar 

  49. Nagant de Deuxchaisnes C, Devogelaer JP, et al. The effect of low dosage glucocorticoids on bone mass in rheumatoid arthritis: a cross-sectional and a longitudinal study using single photon absorptiometry. Adv Exp Med Biol. 1984;171:209–39.

    Google Scholar 

  50. Jardinet D, Lefèbvre C, et al. Longitudinal analysis of bone mineral density in pre-menopausal female systemic lupus erythematosus patients: deleterious role of glucocorticoid therapy at the lumbar spine. Rheumatology. 2000;39(4):389–92.

    Article  CAS  PubMed  Google Scholar 

  51. Rubin J, Biskobing DM, et al. Dexamethasone promotes expression of membrane-bound macrophage colony-stimulating factor in murine osteoblast-like cells. Endocrinology. 1998;139(3):1006–12.

    Article  CAS  PubMed  Google Scholar 

  52. Jia D, O’Brien CA, et al. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology. 2006;147(12):5592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–87.

    Article  PubMed  Google Scholar 

  54. Canalis E, Mazziotti G, et al. Glucocorticoid induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18(10):1319–28.

    Article  CAS  PubMed  Google Scholar 

  55. O’Brien CA, Jia D, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004;145(4):1835–41.

    Article  PubMed  CAS  Google Scholar 

  56. Bressot C, Meunier PJ, et al. Histomorphometric profile, pathophysiology and reversibility of corticosteroid-induced osteoporosis. Metab Bone Dis Relat Res. 1979;1:303–11.

    Article  Google Scholar 

  57. Dalle Carbonare L, Bertoldoa F, et al. Histomorphometric analysis of glucocorticoid-induced osteoporosis. Micron. 2005;36:645–52.

    Article  CAS  PubMed  Google Scholar 

  58. Weinstein RS, Jilka RL, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Investig. 1998;102(2):274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dempster DW, Moonga BS, et al. Glucocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apoptosis. J Endocrinol. 1997;154(3):397–406.

    Article  CAS  PubMed  Google Scholar 

  60. Weinstein RS. Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med. 2011;365(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  61. Dempster DW. Bone histomorphometry in glucocorticoid-induced osteoporosis. J Bone Miner Res. 1989;4:137–41.

    Article  CAS  PubMed  Google Scholar 

  62. Pepmueller PH, Cassidy JT, et al. Bone mineralization and bone mineral metabolism in children with juvenile rheumatoid arthritis. Arthritis Rheum. 1996;39(5):746–57.

    Article  CAS  PubMed  Google Scholar 

  63. Valta H, Lahdenne P, et al. Bone health and growth in glucocorticoid-treated patients with juvenile idiopathic arthritis. J Rheumatol. 2007;34(4):831–6.

    PubMed  Google Scholar 

  64. Falcini F, Trapani S, et al. The primary role of steroids on the osteoporosis in juvenile rheumatoid patients evaluated by dual energy X-ray absorptiometry. J Endocrinol Investig. 1996;19(3):165–9.

    Article  CAS  Google Scholar 

  65. Lin YT, Wang CT, et al. The pathogenesis of oligoarticular/polyarticular vs systemic juvenile idiopathic arthritis. Autoimmun Rev. 2011;10(8):482–9.

    Article  CAS  PubMed  Google Scholar 

  66. van Staa TP, Leufkens HGM, et al. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000;15(6):993–1000.

    Article  PubMed  Google Scholar 

  67. van Staa TP, Leufkens HGM, et al. Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology. 2000;39(12):1383–9.

    Article  PubMed  Google Scholar 

  68. Boot AM, de Jongste JC, et al. Bone mineral density and bone metabolism of prepubertal children with asthma after long-term treatment with inhaled corticosteroids. Pediatr Pulmonol. 1997;24(6):379–84.

    Article  CAS  PubMed  Google Scholar 

  69. Hochberg Z. Mechanisms of steroid impairment of growth. Horm Res. 2002;58(Suppl 1):33–8.

    CAS  PubMed  Google Scholar 

  70. Ecklund K, Laor T, et al. Methotrexate osteopathy in patients with osteosarcoma. Radiology. 1997;202:543–7.

    Article  CAS  PubMed  Google Scholar 

  71. Pirker-Fruhauf UM, Friesenbichler J, et al. Osteoporosis in children and young adults. A late effect after chemotherapy for bone sarcoma. Clin Orthop Relat Res. 2012;470:2874–85.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bianchi ML, Cimaz R, et al. Bone mass change during methotrexate treatment in patients with juvenile rheumatoid arthritis. Osteoporosis Int. 1999;10:20–5.

    Article  CAS  Google Scholar 

  73. Henderson CJ, Cawkwell GD, et al. Predictors of total body bone mineral density in non-corticosteroid-treated prepubertal children with juvenile rheumatoid arthritis. Arthritis Rheumatol. 1997;40:1967–75.

    Article  CAS  Google Scholar 

  74. Henderson CJ, Specker BL, et al. Total-body bone mineral content in non-corticosteroid-treated postpubertal females with juvenile rheumatoid arthritis: frequency of osteopenia and contributing factors. Arthritis Rheum. 2000;43(3):531–40.

    Article  CAS  PubMed  Google Scholar 

  75. Sakakura CE, Margonar R, et al. Influence of cyclosporin A therapy on bone healing around titanium implants: a histometric and biomechanic study in rabbits. J Periodontol. 2003;74:976–81.

    Article  CAS  PubMed  Google Scholar 

  76. Ahmadpoor P, Reisi S, et al. Osteoporosis and related risk factors in renal transplant recipients. Transpl Proc. 2009;41:2820–2.

    Article  CAS  Google Scholar 

  77. Modesto W, Bahamondes MV, et al. Exploratory study of the effect of lifestyle counseling on bone mineral density and body composition in users of the contraceptive depot-medroxyprogesterone acetate. Eur J Contracept Reprod Health Care. 2014;19(4):244–9.

    Article  CAS  PubMed  Google Scholar 

  78. Walsh JS, Eastell R, Peel NFA. Effects of depot medroxyprogesterone acetate on bone density and bone metabolism before and after peak bone mass: a case-control study. J Clin Endocrinol Metab. 2008;93:1317–23.

    Article  CAS  PubMed  Google Scholar 

  79. Freedberg DE, Haynes K, et al. Use of proton pump inhibitors is associated with fractures in young adults: a population-based study. Osteoporos Int. 2015;26(10):2501–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pettifor JM, Prentice A. The role of vitamin D in paediatric bone health. Best Pract Res Clin Endocrinol Metab. 2011;25:573–84.

    Article  CAS  PubMed  Google Scholar 

  81. Molgaard C, Thomsen BL, Michaelsen KF. The influence of calcium intake and physical activity on bone mineral content and bone size in healthy children and adolescents. Osteoporos Int. 2001;12:887–94.

    Article  CAS  PubMed  Google Scholar 

  82. Markula-Patjas KP, Valta HL, et al. Prevalence of vertebral compression fractures and associated factors in children and adolescents with severe juvenile idiopathic arthritis. J Rheumatol. 2012;39(2):365–73.

    Article  CAS  PubMed  Google Scholar 

  83. Pelajo CF, Lopez-Benitez JM, Miller LC. 25-hydroxyvitamin D levels and vitamin D deficiency in children with rheumatologic disorders and controls. J Rheumatol. 2011;38(9):2000–4.

    Article  CAS  PubMed  Google Scholar 

  84. Breslin LC, Magee PJ, et al. An evaluation of vitamin D status in individuals with systemic lupus erythematosus. Proc Nutr Soc. 2011;70:399–407.

    Article  CAS  PubMed  Google Scholar 

  85. Lim LS, Benseler SM, et al. Predicting longitudinal trajectory of bone mineral density in paediatric systemic lupus erythematosus patients. Ann Rheum Dis. 2012;71(10):1686–91.

    Article  PubMed  Google Scholar 

  86. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.

    Article  CAS  PubMed  Google Scholar 

  87. Arunabh S, Pollack S, et al. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab. 2003;88:157–61.

    Article  CAS  PubMed  Google Scholar 

  88. Koeckhoven E, van der Leeden M, et al. The association between serum 25-hydroxy vitamin D level and upper leg strength in patients with knee osteoarthritis: results of the Amsterdam Osteoarthritis Cohort. J Rheumatol. 2016;43:1400–5.

    Article  PubMed  Google Scholar 

  89. Chiang CM, Ismaeel A, et al. Effects of vitamin D supplementation on muscle strength in athletes a systematic review. J Strength Cond Res. 2017;31(2):566–74. doi:10.1519/JSC.0000000000001518.

    PubMed  Google Scholar 

  90. Ward KA, Das G, et al. A randomized, controlled trial of vitamin D supplementation upon musculoskeletal health in postmenarcheal females. J Clin Endocrinol Metab. 2010;95:4643–51.

    Article  CAS  PubMed  Google Scholar 

  91. Strong WB, Malina RM, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146:732–7.

    Article  PubMed  Google Scholar 

  92. Malleson PN, Bennett SM, et al. Physical fitness and its relationship to other indices of health status in children with chronic arthritis. J Rheumatol. 1996;23(6):1059–65.

    CAS  PubMed  Google Scholar 

  93. Felin EM, Prahalad S, et al. Musculoskeletal abnormalities of the tibia in juvenile rheumatoid arthritis. Arthritis Rheumatism. 2007;56(3):984–94.

    Article  PubMed  Google Scholar 

  94. Klepper SE. Exercise in pediatric rheumatic diseases. Curr Opin Rheumatol. 2008;20:619–24.

    Article  PubMed  Google Scholar 

  95. Takken T, Hemel A, et al. Aerobic fitness in children with juvenile idiopathic arthritis: a systematic review. J Rheumatol. 2002;29:2643–7.

    PubMed  Google Scholar 

  96. Stephens S, Singh-Grewal D, et al. Reliability of exercise testing and functional activity questionnaires in children with juvenile arthritis. Arthritis Care Res. 2007;57:1446–52.

    Article  Google Scholar 

  97. Klepper SE. Inter- and intra-rater reliability and test-retest stability of measures of physical function in children with and without juvenile idiopathic arthritis. Pediatr Phys Ther. 2008;20:110–1.

    Google Scholar 

  98. Klepper SE. Exercise and fitness in children with arthritis: evidence of benefits for exercise and physical activity. Arthritis Care Res. 2003;49:435–43.

    Article  Google Scholar 

  99. van Brussel M, Lelieveld OT, et al. Aerobic and anaerobic capacity in children with juvenile idiopathic arthritis. Arthritis Care Res. 2007;57:891–7.

    Article  Google Scholar 

  100. Welten DC, Kemper HC, et al. Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Miner Res. 1994;9(7):1089–96.

    Article  CAS  PubMed  Google Scholar 

  101. Schoenau E. From mechanostat theory to development of the “Functional Muscle-Bone-Unit”. J Musculoskelet Neuronal Interact. 2005;5(3):232–8.

    CAS  PubMed  Google Scholar 

  102. Kannus P, Haapasalo H, et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med. 1995;123:27–31.

    Article  CAS  PubMed  Google Scholar 

  103. Tervo T, Nordström P, Nordström A. Effects of badminton and ice hockey on bone mass in young males: a 12-year follow-up. Bone. 2010;47:666–72.

    Article  PubMed  Google Scholar 

  104. Nilsson M, Ohlsson C, et al. Competitive physical activity early in life is associated with bone mineral density in elderly Swedish men. Osteoporos Int. 2008;19:1557–66.

    Article  CAS  PubMed  Google Scholar 

  105. Manias K, McCabe D, Bishop N. Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass. Bone. 2006;36:652–7.

    Article  Google Scholar 

  106. Badri DE, Rostom S, et al. Effect of body composition on bone mineral density in Moroccan patients with juvenile idiopathic arthritis. Pan Afr Med J. 2014;17:115.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Simon D. Puberty in chronically diseased patients. Horm Res. 2002;57(suppl 2):53–6.

    CAS  PubMed  Google Scholar 

  108. Argente J. Diagnosis of late puberty. Horm Res. 1999;51:95–100.

    CAS  PubMed  Google Scholar 

  109. Ballinger AB, Savage MO, Sanderson IR. Delayed puberty associated with inflammatory bowel disease. Pediatr Res. 2003;53:205–10.

    Article  PubMed  Google Scholar 

  110. Alfredo M. Relationship between delayed menarche and bone mineralization in patients affected by juvenile idiopathic arthritis (JIA). J Clin Dens. 2006;9:341.

    Article  Google Scholar 

  111. Woźniak S. Rheumatoid arthritis—peculiarity in children. Ped Prakt. 1998;6:13–6.

    Google Scholar 

  112. Rygg M, Pistorio A, et al. A longitudinal PRINTO study on growth and puberty in juvenile systemic lupus erythematosus. Ann Rheum Dis. 2012;71:511–7.

    Article  PubMed  Google Scholar 

  113. Ott SM. Attainment of peak bone mass. J Clin Endocrinol Metab. 1990;71:1082A-C.

    Article  Google Scholar 

  114. Maïmoun L, Georgopoulos NA, Sultan C. Endocrine disorders in adolescent and young female athletes: impact on growth, menstrual cycles, and bone mass acquisition. J Clin Endocrinol Metab. 2014;99:4037–50.

    Article  PubMed  CAS  Google Scholar 

  115. Bielinski BK, Darbyshire PJ, et al. Impact of disordered puberty on bone density in beta-thalassaemia major. Br J Haematol. 2003;120:353–8.

    Article  PubMed  Google Scholar 

  116. Williams KM. Update on bone health in pediatric chronic disease. Endocrinol Metab Clin N Am. 2016;45:433–41.

    Article  Google Scholar 

  117. Rogol AD. New facets of androgen replacement therapy during childhood and adolescence. Expert Opin Pharmacother. 2005;6:1319–36.

    Article  CAS  PubMed  Google Scholar 

  118. Jackowski SA, Erlandson MC, et al. Effect of maturational timing on bone mineral content accrual from childhood to adulthood: evidence from 15 years of longitudinal data. Bone. 2011;48:1178–85.

    Article  PubMed  Google Scholar 

  119. Chevalley T, Bonjour JP, et al. Deleterious effect of late menarche on distal tibia microstructure in healthy 20-year-old and premenopausal middle-aged women. J Bone Miner Res. 2009;24:144–52.

    Article  PubMed  Google Scholar 

  120. Gilsanz V, Chalfant J, et al. Age at onset of puberty predicts bone mass in young adulthood. J Pediatr. 2011;158:100–5 (105.e1–2).

    Article  PubMed  Google Scholar 

  121. Mauras N, Hayes V, et al. Testosterone deficiency in young men: marked alterations in whole body protein kinetics, strength, and adiposity. J Clin Endocrinol Metab. 1998;83:1886–92.

    CAS  PubMed  Google Scholar 

  122. Regio P, Bonfa E, et al. The influence of lean mass in trabecular and cortical bone in juvenile onset systemic lupus erythematosus. Lupus. 2008;17(9):787–92.

    Article  PubMed  Google Scholar 

  123. Cassidy JT, Hillman LS. Abnormalities in skeletal growth in children with juvenile rheumatoid arthritis. Rheum Dis Clin North Am. 1997;23(3):499–522.

    Article  CAS  PubMed  Google Scholar 

  124. Stagi S, Masi L, et al. Cross-sectional and longitudinal evaluation of bone mass in children and young adults with juvenile idiopathic arthritis: the role of bone mass determinants in a large cohort of patients. J Rheumatol. 2010;37(9):1935–43.

    Article  PubMed  Google Scholar 

  125. Tang T, Tang X, et al. Evaluation of bone mass in children and young adults with juvenile idiopathic arthritis. Clin Exp Rheumatol. 2015;33:758–64.

    PubMed  Google Scholar 

  126. Stagi S, Cavalli L, et al. Bone mass and quality in patients with juvenile idiopathic arthritis: longitudinal evaluation of bone-mass determinants by using dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and quantitative ultrasonography. Arthritis Res Ther. 2014;16:R83.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Dey S, Jahan A, et al. Measurement of bone mineral density by dual energy X-ray absorptiometry in juvenile idiopathic arthritis. Indian J Pediatr. 2014;81(2):126–32.

    Article  PubMed  Google Scholar 

  128. Thornton J, Pye SR, et al. Bone health in adult men and women with a history of juvenile idiopathic arthritis. J Rheumatol. 2011;38:1689–93.

    Article  PubMed  Google Scholar 

  129. Baker-LePain JC, Nakamura MC, et al. Assessment of bone remodelling in childhood-onset systemic lupus erythematosus. Rheumatology. 2011;50:611–9.

    Article  PubMed  Google Scholar 

  130. Casella CB, Seguro LP, et al. Juvenile onset systemic lupus erythematosus: a possible role for vitamin D in disease status and bone health. Lupus. 2012;21(12):1335–42.

    Article  CAS  PubMed  Google Scholar 

  131. Santiago RA, Silva CA, et al. Bone mineral apparent density in juvenile dermatomyositis: the role of lean body mass and glucocorticoid use. Scand J Rheumatol. 2008;37(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  132. Rouster-Stevens KA, Langman CB, et al. RANKL: osteoprotegerin ratio and bone mineral density in children with untreated juvenile dermatomyositis. Arthritis Rheumatism. 2007;56(3):977–83.

    Article  CAS  PubMed  Google Scholar 

  133. Souza RB, Borges CT, et al. Systemic sclerosis and bone loss: the role of the disease and body composition. Scand J Rheumatol. 2006;35(5):384–7.

    Article  CAS  PubMed  Google Scholar 

  134. Shinjo SK, Bonfa E, et al. Low bone mass in juvenile onset sclerosis systemic: the possible role for 25-hydroxyvitamin D insufficiency. Rheumatol Int. 2011;31(8):1075–80.

    Article  CAS  PubMed  Google Scholar 

  135. Frediani B, Baldi F, et al. Clinical determinants of bone mass and bone ultrasonometry in patients with systemic sclerosis. Clin Exp Rheumatol. 2004;22(3):313–8.

    CAS  PubMed  Google Scholar 

  136. Sampaio-Barros PD, Costa-Paiva L, et al. Prognostic factors of low bone mineral density in systemic sclerosis. Clin Exp Rheumatol. 2005;23(2):180–4.

    CAS  PubMed  Google Scholar 

  137. Fonseca A, Gordon CL, Barr RD. Peripheral quantitative computed tomography (pQCT) to assess bone health in children, adolescents, and young adults: a review of normative data. J Pediatr Hematol Oncol. 2013;35:581–9.

    Article  PubMed  Google Scholar 

  138. Thornton J, Ashcroft D, et al. A systematic review of the effectiveness of strategies for reducing fracture risk in children with juvenile idiopathic arthritis with additional data on long-term risk of fracture and cost of disease management. Health Technol Assess. 2008;12(3):iii–ix, xi–xiv, 1–208.

  139. Clark EM, Tobias JH, Ness AR. Association between bone density and fractures in children: a systematic review and meta-analysis. Pediatrics. 2006;117:e291–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rauch F, Schoenau E. Changes in bone density during childhood and adolescence: an approach based on bone’s biological organisation. J Bone Miner Res. 2001;16:1–8.

    Article  Google Scholar 

  141. Schoenau E, Saggese G, et al. From bone biology to bone analysis. Horm Res. 2004;61:257–69.

    Article  CAS  PubMed  Google Scholar 

  142. Cimaz R, Ward L. The impact of rheumatic diseases and their treatment on bone strength development in childhood. In: Petty RE, Laxer RM, et al., editors. Textbook of pediatric rheumatology. 7th ed. Elsevier: Amsterdam; 2016. p. 693–705.

    Chapter  Google Scholar 

  143. Bachrach LK. Consensus and controversy regarding osteoporosis in the pediatric population. Endocr Pract. 2007;13:513–20.

    Article  PubMed  Google Scholar 

  144. van Rijn RR, Van DS, et al. Bone densitometry in children: a critical appraisal. Eur Radiol. 2003;13:700–10.

    PubMed  Google Scholar 

  145. Baroncelli GI, Federico G, et al. Phalangeal Quantitative Ultrasound Group: Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone. 2006;39:159–73.

    Article  PubMed  Google Scholar 

  146. Caffarelli C, Hayek J, et al. A comparative study of dual-X-ray absorptiometry and quantitative ultrasonography for the evaluating bone status in subjects with Rett syndrome. Calcif Tissue Int. 2014;95:248–56.

    Article  CAS  PubMed  Google Scholar 

  147. Baroncelli GI, Federico G, et al. Bone quality assessment by quantitative ultrasound of proximal phalanxes of the hand in healthy subjects aged 3–21 years. Pediatr Res. 2001;49:713–8.

    Article  CAS  PubMed  Google Scholar 

  148. Barkmann R, Rohrscheider W, et al. German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges. Osteoporos Int. 2002;13:55–61.

    Article  CAS  PubMed  Google Scholar 

  149. Vojinovic J, Cimaz R. Vitamin D—update for the pediatric rheumatologists. Pediatr Rheumat. 2015;13:18.

    Article  Google Scholar 

  150. Institute of Medicine (IOM). Dietary reference intakes for calcium and vitamin D. Committee to Review Dietary Reference Intakes for Calcium and Vitamin D. Washington DC: National Academies Press; 2011. http://iom.edu/~/media/Files/Report%20Files/2010/Dietary-Reference-Intakes-for-Calcium-and-Vitamin-D/Vitamin%20D%20and%20Calcium%202010%20Report%20Brief.pdf.

  151. Devogelaer JP, Boutsen Y, et al. Is there a place for bone turnover markers in the assessment of osteoporosis and its treatment? Rheum Dis Clin N Am. 2011;37:365–86.

    Article  Google Scholar 

  152. Parfitt AM. What is the normal rate of bone remodeling? Bone. 2004;35:1–3.

    Article  CAS  PubMed  Google Scholar 

  153. Doyon A, Fischer DC, et al. Markers of bone metabolism are affected by renal function and growth hormone therapy in children with chronic kidney disease. Bone Metab Pediatr CKD. 2015. doi:10.1371/journal.pone.0113482.

    Google Scholar 

  154. Hollander MC, Sage JM, et al. International consensus for provisions of quality-driven care in childhood-onset systemic lupus erythematosus. Arthritis Care Res. 2013;65(9):1416–23.

    Article  Google Scholar 

  155. De Vries F, Bracke M, et al. Fracture risk with intermittent high-dose oral glucocorticoid therapy. Arthritis Rheum. 2007;56(1):208–14.

    Article  PubMed  CAS  Google Scholar 

  156. Compston J. Management of glucocorticoid-induced osteoporosis. Nat Rev Rheumatol. 2010;6(2):82–8.

    Article  CAS  PubMed  Google Scholar 

  157. Gluck OS, Murphy WA, et al. Bone loss in adults receiving alternate day glucocorticoid therapy. A comparison with daily therapy. Arthritis Rheum. 1981;24(7):892–8.

    Article  CAS  PubMed  Google Scholar 

  158. Ruegsegger P, Medici TC, Anliker M. Corticosteroid-induced bone loss. A longitudinal study of alternate day therapy in patients with bronchial asthma using quantitative computed tomography. Eur J Clin Pharmacol. 1983;25:615–20.

    Article  CAS  PubMed  Google Scholar 

  159. Frediani B, Falsetti P, et al. Effects of high dose methylprednisolone pulse therapy on bone mass and biochemical markers of bone metabolism in patients with active rheumatoid arthritis: a 12-month randomized prospective controlled study. J Rheumatol. 2004;31(6):1083–7.

    CAS  PubMed  Google Scholar 

  160. Haugeberg G, Griffiths B, et al. Bone loss in patients treated with pulses of methylprednisolone is not negligible: a short term prospective observational study. Ann Rheum Dis. 2004;63:940–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Vis M, Havaardsholm EA, et al. Evaluation of bone mineral density, bone metabolism, osteoprotegerin and receptor activator of the NFkappaB ligand serum levels during treatment with infliximab in patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65:1495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Simonini G, Giani T, et al. Bone status over 1 year of etanercept treatment in juvenile idiopathic arthritis. Rheumatology (Oxford). 2005;44:777–80.

    Article  CAS  Google Scholar 

  163. Brabnikova Maresova K, Jarosova K, et al. Bone status in adults with early-onset juvenile idiopathic arthritis following 1-year anti-TNF alpha therapy and discontinuation of glucocorticoids. Rheumatol Int. 2013;33(8):2001–7.

    Article  CAS  PubMed  Google Scholar 

  164. Billiau AD, Loop M, et al. Etanercept improves linear growth and bone mass acquisition in MTX-resistant polyarticular-course juvenile idiopathic arthritis. Rheumatology. 2010;49:1550–8.

    Article  CAS  PubMed  Google Scholar 

  165. Marotte H, Pallot-Prades B, et al. A 1-year case-control study in patients with rheumatoid arthritis indicates prevention of loss of bone mineral density in both responders and nonresponders to infliximab. Arthritis Res Ther. 2007;9(3):R61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Amin S, LaValley MP, et al. The role of vitamin D in corticosteroid-induced osteoporosis: a meta-analytic approach. Arthritis Rheum. 1999;42(8):1740–51.

    Article  CAS  PubMed  Google Scholar 

  167. Amin S, Lavalley MP, et al. The comparative efficacy of drug therapies used for the management of corticosteroid-induced osteoporosis: a meta-regression. J Bone Miner Res. 2002;17(8):1512–26.

    Article  CAS  PubMed  Google Scholar 

  168. Nisar MK, Masood F, et al. What do we know about juvenile idiopathic arthritis and vitamin D? A systematic literature review and meta-analysis of current evidence. Clin Rheumatol. 2013;32(6):729–34.

    Article  PubMed  Google Scholar 

  169. Cutolo M, Pizzorni C, Sulli A. Vitamin D endocrine system involvement in autoimmune rheumatic diseases. Autoimmun Rev. 2011;11:84–7.

    Article  CAS  PubMed  Google Scholar 

  170. Maruotti N, Cantatore FP. Vitamin D and the Immune System. J Rheumatol. 2010;37:491–5.

    Article  CAS  PubMed  Google Scholar 

  171. Norman AW. Vitamin D, receptor: new assignments for an already busy receptor. Endocrinology. 2006;147:5542–8.

    Article  CAS  PubMed  Google Scholar 

  172. Rigby WF, Stacy T, Fanger MW. Inhibition of T lymphocyte mitogenesis by 1,25-hydroxyvitamin D3 (calcitriol). J Clin Investig. 1984;74:1451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Boonstra A, Barrat FJ, et al. 1 alpha,25-Dihydroxyvitamin D3 has a direct effect on naïve CD4(+) T cells to enhance the development of Th2 cells. J Immunol. 2001;167:4974–80.

    Article  CAS  PubMed  Google Scholar 

  174. Mahon BD, Wittke A, et al. The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells. J Cell Biochem. 2003;89:922–32.

    Article  CAS  PubMed  Google Scholar 

  175. Lemire JM, Archer DC, et al. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr. 1995;125:1704S–8S.

    CAS  PubMed  Google Scholar 

  176. Cantorna MT. Vitamin D and autoimmunity: is vitamin D status an environmental factor affecting autoimmune disease prevalence? Proc Soc Exp Biol Med. 2000;223:230–3.

    Article  CAS  PubMed  Google Scholar 

  177. Daniel C, Sartory NA, et al. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J Pharmacol Exp Ther. 2008;324:23–33.

    Article  CAS  PubMed  Google Scholar 

  178. Tang J, Zhou R, et al. Calcitriol suppresses antiretinal autoimmunity through inhibitory effects on the Th17 effector response. J Immunol. 2009;182:4624–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Almerighi C, Sinistro A, et al. 1a,25-dihydroxyvitamin D3 inhibits CD40L-induced pro-inflammatory and immunomodulatory activity in human monocytes. Cytokine. 2009;45:190–7.

    Article  CAS  PubMed  Google Scholar 

  180. van Etten E, Mathieu C. Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol. 2005;97:93–101.

    Article  PubMed  CAS  Google Scholar 

  181. Chen S, Sims GP, et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179:1634–47.

    Article  CAS  PubMed  Google Scholar 

  182. Prietl B, Treiber G, et al. Vitamin D and immune function. Nutrients. 2013;5(7):2502–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Holick MF. Vitamin D. Clin Rev Bone Miner Metab. 2002;1(3/4):181–207.

    Article  CAS  Google Scholar 

  184. Looker AC, Johnson CL, et al. Vitamin D status: United States, 2001–2006. NCHS Data Brief. 2011;59:1–8.

    Google Scholar 

  185. Pelajo CF, Lopez-Benitez JM, et al. 25-hydroxyvitamin D levels and juvenile idiopathic arthritis: is there an association with disease activity? Rheumatol Int. 2012;32(12):3923–9.

    Article  CAS  PubMed  Google Scholar 

  186. Stagi S, Cavalli L, et al. Vitamin D levels in children, adolescents, and young adults with juvenile-onset systemic lupus erythematosus: a cross-sectional study. Lupus. 2014;23:1059–65.

    Article  CAS  PubMed  Google Scholar 

  187. Reed A, Haugen M, et al. Abnormalities in serum osteocalcin values in children with chronic rheumatic diseases. J Pediatr. 1990;116(4):574–80.

    Article  CAS  PubMed  Google Scholar 

  188. Robinson AB, Rabinovich CE. Hypovitaminosis D is prevalent despite vitamin D supplementation in pediatric systemic lupus erythematosus. Abstract in 72nd annual meeting of the American College of Rheumatology, San Francisco, CA; 2008.

  189. Azali P, Barbasso Helmers S, et al. Low serum levels of vitamin D in idiopathic inflammatory myopathies. Ann Rheum Dis. 2013;72(4):512–6.

    Article  CAS  PubMed  Google Scholar 

  190. Ubesie AC, Heubi JE, et al. Vitamin D deficiency and low bone mineral density in pediatric and young adult intestinal failure. J Pediatr Gastroenterol Nutr. 2013;57(3):372–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. van Bodegraven AA, Bravenboer N, et al. Treatment of bone loss in osteopenic patients with Crohn’s disease: a double-blind, randomised trial of oral risedronate 35 mg once weekly or placebo, concomitant with calcium and vitamin D supplementation. Gut. 2013. doi:10.1136/gutjnl-2013-305523.

    Google Scholar 

  192. Swanson CM, Srikanth P, et al. Associations of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D with bone mineral density, bone mineral density change, and incident nonvertebral fracture. J Bone Miner Res. 2015;30(8):1403–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Holick MF, Binkley CN, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    Article  CAS  PubMed  Google Scholar 

  194. Prentice A. Diet, nutrition and the prevention of osteoporosis. Public Health Nutr. 2004;7:227–43.

    Article  CAS  PubMed  Google Scholar 

  195. Holick MF. The D-lightful vitamin D for child health. J Parent Enter Nutr. 2012;36(Suppl 1):9S–19S.

    Article  Google Scholar 

  196. Logan VF, Gray AR, et al. Long-term vitamin D3 supplementation is more effective than vitamin D2 in maintaining serum 25-hydroxyvitamin D status over the winter months. Br J Nutr. 2013;109:1082–8.

    Article  CAS  PubMed  Google Scholar 

  197. Tripkovic L, Lambert H, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95:1357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Omori CH, Silva CA, et al. Exercise training in juvenile dermatomyositis. Arthritis Care Res. 2012;64(8):1186–94.

    CAS  Google Scholar 

  199. Singh-Grewal D, Wright V, et al. Pilot study of fitness training and exercise testing in polyarticular childhood arthritis. Arthritis Rheum. 2006;55:364–72.

    Article  CAS  PubMed  Google Scholar 

  200. Nichols DL, Sanborn CF, Love AM. Resistance training and bone mineral density in adolescent females. J Pediatr. 2001;139:494–500.

    Article  CAS  PubMed  Google Scholar 

  201. Julian-Almarcegui C, Gomez-Cabello A, et al. Combined effects of interaction between physical activity and nutrition on bone health in children and adolescents: a systematic review. Nutr Rev. 2015;73(3):127–39.

    Article  CAS  PubMed  Google Scholar 

  202. Kotaniemi A, Savolainen A, et al. Weight-bearing physical activity, calcium intake, systemic glucocorticoids, chronic inflammation and body constitution as determinants of lumbar and femoral bone mineral in juvenile chronic arthritis. Scand J Rheumatol. 1999;28:19–26.

    Article  CAS  PubMed  Google Scholar 

  203. Glorieux FH, Bishop N, et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339:947–52.

    Article  CAS  PubMed  Google Scholar 

  204. Batch JA, Couper JJ, et al. Use of bisphosphonate therapy for osteoporosis in childhood and adolescence. J Paediatr Child Health. 2003;39:88–92.

    Article  CAS  PubMed  Google Scholar 

  205. Acott PD, Wong JA, et al. Pamidronate treatment of pediatric fracture patients on chronic steroid therapy. Pediatr Nephrol. 2005;20(3):368–73.

    Article  PubMed  Google Scholar 

  206. Bianchi ML, Cimaz R, et al. Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children: a prospective multicenter study. Arthritis Rheum. 2000;43:1960–6.

    Article  CAS  PubMed  Google Scholar 

  207. Unal E, Abaci A, et al. Efficacy and safety of oral alendronate treatment in children and adolescents with osteoporosis. J Pediatr Endocrinol Metab. 2006;19:523–8.

    CAS  PubMed  Google Scholar 

  208. Rudge S, Hailwood S, et al. Effects of once-weekly oral alendronate on bone in children on glucocorticoid treatment. Rheumatology (Oxford). 2005;44:813–8.

    Article  CAS  Google Scholar 

  209. Bachrach LK, Ward LM. Clinical review 1: bisphosphonate use in childhood osteoporosis. J Clin Endocrinol Metab. 2009;94(2):400–9.

    Article  CAS  PubMed  Google Scholar 

  210. Ward L, Tricco AC, et al. Bisphosphonate therapy for children and adolescents with secondary osteoporosis. Cochrane Database Syst Rev. 2007;4:CD005324.

    Google Scholar 

  211. Thornton J, Ashcroft DM, et al. Systematic review of effectiveness of bisphosphonates in treatment of low bone mineral density and fragility fractures in juvenile idiopathic arthritis. Arch Dis Child. 2006;91(9):753–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Inoue Y, Shimojo N, et al. Efficacy of intravenous alendronate for the treatment of glucocorticoid-induced osteoporosis in children with autoimmune diseases. Clin Rheumatol. 2008;27:909.

    Article  PubMed  Google Scholar 

  213. Hogler W, Yap F, et al. Short term safety assessment in the use of intravenous zoledronic acid in children. J Pediatr. 2004;145:701–4.

    Article  PubMed  CAS  Google Scholar 

  214. Lepore L, Pennesi M, et al. Treatment and prevention of osteoporosis in juvenile chronic arthritis with disodium clodronate. Clin Exp Rheumatol. 1991;9(Suppl 6):33–5.

    PubMed  Google Scholar 

  215. Woo SB, Hellstein JW, Kalmar JR. Narrative [corrected] review: bisphosphonates and osteonecrosis of the jaw. Ann Intern Med. 2006;144:753–61.

    Article  CAS  PubMed  Google Scholar 

  216. Carmona EC, Flores AG, et al. Systematic literature review of bisphosphonates and osteonecrosis of the jaw in patients with osteoporosis. Reumatol Clin. 2013;9(3):172–7.

    Article  Google Scholar 

  217. Khosla S, Burr D, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society of Bone and Mineral Research. J Bone Miner Res. 2007;22:1479–91.

    Article  PubMed  Google Scholar 

  218. Sugawara S, Ikegawa S, et al. Toxicity studies of alendronate on parturition in the rat. Kiso to Rinsyo. 1994;121:217–23.

    Google Scholar 

  219. Patlas N, Golomb G, et al. Transplacental effects of bisphosphonates on fetal skeletal ossification and mineralization in rats. Teratology. 1999;60:68–73.

    Article  CAS  PubMed  Google Scholar 

  220. Graepel P, Bentley P, et al. Reproduction toxicity studies with pamidronate. Arzneimittelforschung. 1992;42:654–67.

    CAS  PubMed  Google Scholar 

  221. Dunlop DJ, Soukop M, McEwan HP. Antenatal administration of aminopropylidene diphosphonate. Ann Rheum Dis. 1990;49:955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Illidge TM, Hussey M, Godden CW. Malignant hypercalcaemia in pregnancy and antenatal administration of intravenous pamidronate. Clin Oncol. 1996;8:257–8.

    Article  CAS  Google Scholar 

  223. Ornoy A, Wajnberg R, Diav-Citrin O. The outcome of pregnancy following prepregnancy or early pregnancy alendronate treatment. Reprod Toxicol. 2006;22:578–9.

    Article  CAS  PubMed  Google Scholar 

  224. Levy S, Fayez I, et al. Pregnancy outcome following in utero exposure to bisphosphonates. Bone. 2009;44:428–30.

    Article  CAS  PubMed  Google Scholar 

  225. Whittier X, Saag KG. Glucocorticoid-induced osteoporosis. Rheum Dis Clin N Am. 2016;42:177–89.

    Article  Google Scholar 

  226. Farrier AJ, Sanchez Franco LC, et al. New anti-resorptives and antibody mediated anti-resorptive therapy. Bone Joint J. 2016;98-B:160–5.

    Article  CAS  PubMed  Google Scholar 

  227. Setsu N, Kobayashi E, et al. Severe hypercalcemia following denosumab treatment in a juvenile patient. J Bone Miner Metab. 2016;34:118–22.

    Article  PubMed  Google Scholar 

  228. Kobayashi E, Setsu N. Osteosclerosis induced by denosumab. Lancet. 2015;385:539.

    Article  PubMed  Google Scholar 

  229. Kelly A, Stevens R, Klein-Gitelman MS. Bone health in pediatric rheumatic disease. Curr Opin Pediatr. 2005;17:703–8.

    Article  Google Scholar 

  230. Sambrook P, Birmingham J, et al. Prevention of corticosteroid osteoporosis. A comparison of calcium, calcitriol, and calcitonin. N Engl J Med. 1993;328(24):1747–52.

    Article  CAS  PubMed  Google Scholar 

  231. Cranney A, Welch V, et al. Calcitonin for the treatment and prevention of corticosteroid-induced osteoporosis. Cochrane Database Syst Rev. 2000;2:CD001983.

    Google Scholar 

  232. Luengo M, Picado C, et al. Treatment of steroid-induced osteopenia with calcitonin in corticosteroid-dependent asthma. A one-year follow-up study. Am Rev Respir Dis. 1990;142:104–7.

    Article  CAS  PubMed  Google Scholar 

  233. Luengo M, Pons F, et al. Prevention of further bone mass loss by nasal calcitonin in patients on long term glucocorticoid therapy for asthma: a two year follow up study. Thorax. 1994;49(11):1099–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Adachi JD, Bensen WG, et al. Salmon calcitonin nasal spray in the prevention of corticosteroid-induced osteoporosis. Br J Rheumatol. 1997;36:255–9.

    Article  CAS  PubMed  Google Scholar 

  235. Kotaniemi A, Piirainen H, et al. Is continuous intranasal salmon calcitonin effective in treating axial bone loss in patients with active rheumatoid arthritis receiving low dose glucocorticoid therapy? J Rheumatol. 1996;23:1875–9.

    CAS  PubMed  Google Scholar 

  236. El-Husseini AA, El-Agroudy AE, et al. Treatment of osteopenia and osteoporosis in renal transplant children and adolescents. Pediatr Transplant. 2004;8:357–61.

    Article  PubMed  Google Scholar 

  237. Canatan D, Akar N, Arcosoy A. Effects of calcitonin therapy on osteoporosis in patients with thalassemia. Acta Haematol. 1995;93:20–4.

    Article  CAS  PubMed  Google Scholar 

  238. Barbehenn EK, Lurie P, Wolfe SM. Osteosarcoma risk in rats using PTH 1–34. Trends Endocrinol Metab. 2001;12(9):383.

    Article  CAS  PubMed  Google Scholar 

  239. Linglart A, Rothenbuhler A, et al. Long-term results of continuous subcutaneous recombinant PTH (1–34) infusion in children with refractory hypoparathyroidism. J Clin Endocrinol Metab. 2011;96:3308–12.

    Article  CAS  PubMed  Google Scholar 

  240. Bechtold S, Beyerlein A, et al. Total pubertal growth in patients with juvenile idiopathic arthritis treated with growth hormone: analysis of a single center. Growth Horm IGF Res. 2012;22(5):180–5.

    Article  CAS  PubMed  Google Scholar 

  241. Saha MT, Haapasaari J, et al. Growth hormone is effective in the treatment of severe growth retardation in children with juvenile chronic arthritis. Double blind placebo-controlled follow up study. J Rheumatol. 2004;31:1413–7.

    CAS  PubMed  Google Scholar 

  242. Bechtold S, Ripperger P, et al. Growth hormone improves height in patients with juvenile idiopathic arthritis: 4-year data of a controlled study. J Pediatr. 2003;143:512–9.

    Article  CAS  PubMed  Google Scholar 

  243. Bechtold S, Ripperger P, et al. Bone mass development and bone metabolism in juvenile idiopathic arthritis: treatment with growth hormone for 4 years. J Rheumatol. 2004;31:1407–12.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Milojevic.

Ethics declarations

Funding

Yujuan Zhang has not received any funding for this review article. Diana Milojevic has not received any funding for this review article.

Conflicts of interest

There are no conflicts of interest of any kind for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Milojevic, D. Protecting Bone Health in Pediatric Rheumatic Diseases: Pharmacological Considerations. Pediatr Drugs 19, 193–211 (2017). https://doi.org/10.1007/s40272-017-0219-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-017-0219-3

Keywords

Navigation