Skip to main content
Log in

Defining Biological Subsets in Systemic Lupus Erythematosus: Progress Toward Personalized Therapy

  • Leading Article
  • Published:
Pharmaceutical Medicine Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a heterogeneous disease with respect to disease severity, response to treatment, and organ damage, the pathogenesis of which includes immunological mechanisms that are driven by both genetic and environmental factors. There are clear differences in the pathogenesis of SLE between patients of different ancestral backgrounds, including differences in genetic risk factors, immunological parameters, and clinical manifestations. Patients with high and low levels of type I interferon (IFN) in circulation represent one major biological subset within SLE, and these two groups of patients are present in all ancestral backgrounds. Genetic factors, autoantibodies, and levels of other cytokines all differ between high and low IFN patients. This distinction has also been important in predicting response to treatment with anti-type I IFN therapies, providing a precedent in SLE for biological subsets predicting treatment response. This review highlights some recent developments in defining biological subsets of SLE based on disease pathophysiology, and we speculate how this improved knowledge of disease heterogeneity will inform our efforts to personalize therapy in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borchers AT, Naguwa SM, Shoenfeld Y, Gershwin ME. The geoepidemiology of systemic lupus erythematosus. Autoimmun Rev. 2010;9:A277–87.

    Article  CAS  PubMed  Google Scholar 

  2. Jimenez S, Cervera R, Font J, Ingelmo M. The epidemiology of systemic lupus erythematosus. Clin Rev Allergy Immunol. 2003;25:3–12.

    Article  PubMed  Google Scholar 

  3. Gonzalez LA, Toloza SM, Alarcon GS. Impact of race and ethnicity in the course and outcome of systemic lupus erythematosus. Rheum Dis Clin N Am. 2014;40:433–54, vii–viii.

  4. Ghodke-Puranik Y, Niewold TB. Immunogenetics of systemic lupus erythematosus: a comprehensive review. J Autoimmun. 2015;64:125–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanchez E, Nadig A, Richardson BC, Freedman BI, Kaufman KM, Kelly JA, et al. Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Ann Rheum Dis. 2011;70:1752–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pons-Estel GJ, Catoggio LJ, Cardiel MH, Bonfa E, Caeiro F, Sato E, et al. Lupus in Latin-American patients: lessons from the GLADEL cohort. Lupus. 2015;24:536–45.

    Article  CAS  PubMed  Google Scholar 

  7. McCarty DJ, Manzi S, Medsger TA Jr, Ramsey-Goldman R, LaPorte RE, Kwoh CK. Incidence of systemic lupus erythematosus. Race and gender differences. Arthritis Rheum. 1995;38:1260–70.

    Article  CAS  PubMed  Google Scholar 

  8. Johnson AE, Gordon C, Palmer RG, Bacon PA. The prevalence and incidence of systemic lupus erythematosus in Birmingham, England. Relationship to ethnicity and country of birth. Arthritis Rheum. 1995;38:551–8.

    Article  CAS  PubMed  Google Scholar 

  9. Chakravarty EF, Bush TM, Manzi S, Clarke AE, Ward MM. Prevalence of adult systemic lupus erythematosus in California and Pennsylvania in 2000: estimates obtained using hospitalization data. Arthritis Rheum. 2007;56:2092–4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Samanta A, Feehally J, Roy S, Nichol FE, Sheldon PJ, Walls J. High prevalence of systemic disease and mortality in Asian subjects with systemic lupus erythematosus. Ann Rheum Dis. 1991;50:490–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hochberg MC. The incidence of systemic lupus erythematosus in Baltimore, Maryland, 1970–1977. Arthritis Rheum. 1985;28:80–6.

    Article  CAS  PubMed  Google Scholar 

  12. Cooper GS, Parks CG, Treadwell EL, St Clair EW, Gilkeson GS, Cohen PL, et al. Differences by race, sex and age in the clinical and immunologic features of recently diagnosed systemic lupus erythematosus patients in the southeastern United States. Lupus. 2002;11:161–7.

    Article  CAS  PubMed  Google Scholar 

  13. Molina JF, Molina J, Garcia C, Gharavi AE, Wilson WA, Espinoza LR. Ethnic differences in the clinical expression of systemic lupus erythematosus: a comparative study between African-Americans and Latin Americans. Lupus. 1997;6:63–7.

    Article  CAS  PubMed  Google Scholar 

  14. Bossingham D. Systemic lupus erythematosus in the far north of Queensland. Lupus. 2003;12:327–31.

    Article  CAS  PubMed  Google Scholar 

  15. Segasothy M, Phillips PA. Systemic lupus erythematosus in Aborigines and Caucasians in central Australia: a comparative study. Lupus. 2001;10:439–44.

    Article  CAS  PubMed  Google Scholar 

  16. Boyer GS, Templin DW, Lanier AP. Rheumatic diseases in Alaskan Indians of the southeast coast: high prevalence of rheumatoid arthritis and systemic lupus erythematosus. J Rheumatol. 1991;18:1477–84.

    CAS  PubMed  Google Scholar 

  17. Peschken CA, Esdaile JM. Systemic lupus erythematosus in North American Indians: a population based study. J Rheumatol. 2000;27:1884–91.

    CAS  PubMed  Google Scholar 

  18. Hopkinson ND, Doherty M, Powell RJ. Clinical features and race-specific incidence/prevalence rates of systemic lupus erythematosus in a geographically complete cohort of patients. Ann Rheum Dis. 1994;53:675–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ward MM, Studenski S. Clinical manifestations of systemic lupus erythematosus. Identification of racial and socioeconomic influences. Arch Intern Med. 1990;150:849–53.

    Article  CAS  PubMed  Google Scholar 

  20. Hochberg MC, Boyd RE, Ahearn JM, Arnett FC, Bias WB, Provost TT, et al. Systemic lupus erythematosus: a review of clinico-laboratory features and immunogenetic markers in 150 patients with emphasis on demographic subsets. Medicine (Baltimore). 1985;64:285–95.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson SR, Urowitz MB, Ibanez D, Gladman DD. Ethnic variation in disease patterns and health outcomes in systemic lupus erythematosus. J Rheumatol. 2006;33:1990–5.

    PubMed  Google Scholar 

  22. Danila MI, Pons-Estel GJ, Zhang J, Vila LM, Reveille JD, Alarcon GS. Renal damage is the most important predictor of mortality within the damage index: data from LUMINA LXIV, a multiethnic US cohort. Rheumatol. 2009;48:542–5.

    Article  Google Scholar 

  23. Ramos PS, Kelly JA, Gray-McGuire C, Bruner GR, Leiran AN, Meyer CM, et al. Familial aggregation and linkage analysis of autoantibody traits in pedigrees multiplex for systemic lupus erythematosus. Genes Immun. 2006;7:417–32.

    Article  CAS  PubMed  Google Scholar 

  24. Niewold TB. Interferon alpha as a primary pathogenic factor in human lupus. J Interferon Cytokine Res. 2011;31:887–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weckerle CE, Franek BS, Kelly JA, Kumabe M, Mikolaitis RA, Green SL, et al. Network analysis of associations between serum interferon-alpha activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 2011;63:1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Petri M, Singh S, Tesfasyone H, Dedrick R, Fry K, Lal P, et al. Longitudinal expression of type I interferon responsive genes in systemic lupus erythematosus. Lupus. 2009;18:980–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ronnblom LE, Alm GV, Oberg KE. Possible induction of systemic lupus erythematosus by interferon-alpha treatment in a patient with a malignant carcinoid tumour. J Intern Med. 1990;227:207–10.

    Article  CAS  PubMed  Google Scholar 

  28. Niewold TB. Interferon alpha-induced lupus: proof of principle. J Clin Rheumatol. 2008;14:131–2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Niewold TB, Swedler WI. Systemic lupus erythematosus arising during interferon-alpha therapy for cryoglobulinemic vasculitis associated with hepatitis C. Clin Rheumatol. 2005;24:178–81.

    Article  PubMed  Google Scholar 

  30. Ko K, Franek BS, Marion M, Kaufman KM, Langefeld CD, Harley JB, et al. Genetic ancestry, serum interferon-alpha activity, and autoantibodies in systemic lupus erythematosus. J Rheumatol. 2012;39:1238–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ko K, Koldobskaya Y, Rosenzweig E, Niewold TB. Activation of the interferon pathway is dependent upon autoantibodies in African-American SLE patients, but not in European-American SLE patients. Front Immunol. 2013;4:309.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sharma S, Jin Z, Rosenzweig E, Rao S, Ko K, Niewold TB. Widely divergent transcriptional patterns between SLE patients of different ancestral backgrounds in sorted immune cell populations. J Autoimmun. 2015;60:51–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ritterhouse LL, Crowe SR, Niewold TB, Merrill JT, Roberts VC, Dedeke AB, et al. B lymphocyte stimulator levels in systemic lupus erythematosus: higher circulating levels in African American patients and increased production after influenza vaccination in patients with low baseline levels. Arthritis Rheum. 2011;63:3931–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sjostrand M, Johansson A, Aqrawi L, Olsson T, Wahren-Herlenius M, Espinosa A. The expression of BAFF is controlled by IRF transcription factors. J Immunol. 2016;196:91–6.

    Article  PubMed  Google Scholar 

  35. Weckerle CE, Mangale D, Franek BS, Kelly JA, Kumabe M, James JA, et al. Large-scale analysis of tumor necrosis factor alpha levels in systemic lupus erythematosus. Arthritis Rheum. 2012;64:2947–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Niewold TB. Advances in lupus genetics. Curr Opin Rheumatol. 2015;27:440–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Al-Mayouf SM, Sunker A, Abdwani R, Abrawi SA, Almurshedi F, Alhashmi N, et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet. 2011;43:1186–8.

    Article  CAS  PubMed  Google Scholar 

  38. Namjou B, Kothari PH, Kelly JA, Glenn SB, Ojwang JO, Adler A, et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 2011;12:270–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet. 2008;40:204–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet. 2009;41:1234–7.

    Article  CAS  PubMed  Google Scholar 

  41. Sanchez E, Comeau ME, Freedman BI, Kelly JA, Kaufman KM, Langefeld CD, et al. Identification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association study. Arthritis Rheum. 2011;63:3493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chung SA, Brown EE, Williams AH, Ramos PS, Berthier CC, Bhangale T, International Consortium for Systemic Lupus Erythematosus Genetics, et al. Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J Am Soc Nephrol. 2014;25:2859–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Freedman BI, Langefeld CD, Andringa KK, Croker JA, Williams AH, Garner NE, Lupus Nephritis–End-Stage Renal Disease Consortium, et al. End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. Arthritis Rheumatol. 2014;66:390–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taylor KE, Remmers EF, Lee AT, Ortmann WA, Plenge RM, Tian C, et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet. 2008;4:e1000084.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sigurdsson S, Nordmark G, Garnier S, Grundberg E, Kwan T, Nilsson O, et al. A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5. Hum Mol Genet. 2008;17:2868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin CP, Adrianto I, Lessard CJ, Kelly JA, Kaufman KM, Guthridge JM, et al. Role of MYH9 and APOL1 in African and non-African populations with lupus nephritis. Genes Immun. 2012;13:232–8.

    Article  CAS  PubMed  Google Scholar 

  47. Iwamoto T, Niewold TB. Genetics of human lupus nephritis. Clin Immunol. 2016. doi:10.1016/j.clim.2016.09.012 (Epub 2016 Sep 28).

    Google Scholar 

  48. Niewold TB, Kelly JA, Kariuki SN, Franek BS, Kumar AA, Kaufman KM, et al. IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus. Ann Rheum Dis. 2012;71:463–8.

    Article  CAS  PubMed  Google Scholar 

  49. Kariuki SN, Kirou KA, MacDermott EJ, Barillas-Arias L, Crow MK, Niewold TB. Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-alpha in lupus patients in vivo. J Immunol. 2009;182:34–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Salloum R, Franek BS, Kariuki SN, Rhee L, Mikolaitis RA, Jolly M, et al. Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-alpha activity in lupus patients. Arthritis Rheum. 2010;62:553–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cherian TS, Kariuki SN, Franek BS, Buyon JP, Clancy RM, Niewold TB. Brief Report: IRF5 systemic lupus erythematosus risk haplotype is associated with asymptomatic serologic autoimmunity and progression to clinical autoimmunity in mothers of children with neonatal lupus. Arthritis Rheum. 2012;64:3383–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Niewold TB, Hua J, Lehman TJ, Harley JB, Crow MK. High serum IFN-alpha activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 2007;8:492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Postal M, Sinicato NA, Pelicari KO, Marini R, Lavras Costallat LT, Appenzeller S. Clinical and serological manifestations associated with interferon-alpha levels in childhood-onset systemic lupus erythematosus. Clinics (Sao Paulo). 2012;67:157–62.

    Article  Google Scholar 

  54. Mangale D, Kariuki SN, Chrabot BS, Kumabe M, Kelly JA, Harley JB, et al. Familial aggregation of high tumor necrosis factor alpha levels in systemic lupus erythematosus. Clin Dev Immunol. 2013;2013:267430.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Grondal G, Kristjansdottir H, Gunnlaugsdottir B, Arnason A, Lundberg I, Klareskog L, et al. Increased number of interleukin-10-producing cells in systemic lupus erythematosus patients and their first-degree relatives and spouses in Icelandic multicase families. Arthritis Rheum. 1999;42:1649–54.

    Article  CAS  PubMed  Google Scholar 

  56. Cham CM, Ko K, Niewold TB. Interferon regulatory factor 5 in the pathogenesis of systemic lupus erythematosus. Clin Dev Immunol. 2012;2012:780436.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Niewold TB, Kelly JA, Flesch MH, Espinoza LR, Harley JB, Crow MK. Association of the IRF5 risk haplotype with high serum interferon-alpha activity in systemic lupus erythematosus patients. Arthritis Rheum. 2008;58:2481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Salloum R, Niewold TB. Interferon regulatory factors in human lupus pathogenesis. Transl Res. 2011;157:326–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sankararaman S, Mallick S, Dannemann M, Prufer K, Kelso J, Paabo S, et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature. 2014;507:354–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dannemann M, Andres AM, Kelso J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human Toll-like receptors. Am J Hum Genet. 2016;98:22–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Deschamps M, Laval G, Fagny M, Itan Y, Abel L, Casanova JL, et al. Genomic signatures of selective pressures and introgression from archaic hominins at human innate immunity genes. Am J Hum Genet. 2016;98:5–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fu Q, Zhao J, Qian X, Wong JL, Kaufman KM, Yu CY, et al. Association of a functional IRF7 variant with systemic lupus erythematosus. Arthritis Rheum. 2011;63:749–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kariuki SN, Ghodke-Puranik Y, Dorschner JM, Chrabot BS, Kelly JA, Tsao BP, et al. Genetic analysis of the pathogenic molecular sub-phenotype interferon-alpha identifies multiple novel loci involved in systemic lupus erythematosus. Genes Immun. 2015;16:15–23.

    Article  CAS  PubMed  Google Scholar 

  64. Kariuki SN, Franek BS, Kumar AA, Arrington J, Mikolaitis RA, Utset TO, et al. Trait-stratified genome-wide association study identifies novel and diverse genetic associations with serologic and cytokine phenotypes in systemic lupus erythematosus. Arthritis Res Ther. 2010;12:R151.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Koldobskaya Y, Ko K, Kumar AA, Agik S, Arrington J, Kariuki SN, et al. Gene-expression-guided selection of candidate loci and molecular phenotype analyses enhance genetic discovery in systemic lupus erythematosus. Clin Dev Immunol. 2012;2012:682018.

    Article  PubMed  PubMed Central  Google Scholar 

  66. da Silva Almeida AC, Abate F, Khiabanian H, Martinez-Escala E, Guitart J, Tensen CP, et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat Genet. 2015;47:1465–70.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sasaki Y, Iseki M, Yamaguchi S, Kurosawa Y, Yamamoto T, Moriwaki Y, et al. Direct evidence of autosomal recessive inheritance of Arg24 to termination codon in purine nucleoside phosphorylase gene in a family with a severe combined immunodeficiency patient. Hum Genet. 1998;103:81–5.

    Article  CAS  PubMed  Google Scholar 

  68. Postal M, Sinicato NA, Appenzeller S, Niewold TB. Drugs in early clinical development for systemic lupus erythematosus. Expert Opin Investig Drugs. 2016;25:573–83.

    Article  CAS  PubMed  Google Scholar 

  69. Vigna-Perez M, Hernandez-Castro B, Paredes-Saharopulos O, Portales-Perez D, Baranda L, Abud-Mendoza C, et al. Clinical and immunological effects of rituximab in patients with lupus nephritis refractory to conventional therapy: a pilot study. Arthritis Res Ther. 2006;8:R83.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Diaz-Lagares C, Croca S, Sangle S, Vital EM, Catapano F, Martinez-Berriotxoa A, et al. Efficacy of rituximab in 164 patients with biopsy-proven lupus nephritis: pooled data from European cohorts. Autoimmun Rev. 2012;11:357–64.

    Article  CAS  PubMed  Google Scholar 

  71. Pepper R, Griffith M, Kirwan C, Levy J, Taube D, Pusey C, et al. Rituximab is an effective treatment for lupus nephritis and allows a reduction in maintenance steroids. Nephrol Dial Transplant. 2009;24:3717–23.

    Article  CAS  PubMed  Google Scholar 

  72. Jonsdottir T, Sundelin B, Welin Henriksson E, van Vollenhoven RF, Gunnarsson I. Rituximab-treated membranous lupus nephritis: clinical outcome and effects on electron dense deposits. Ann Rheum Dis. 2011;70:1172–3.

    Article  PubMed  Google Scholar 

  73. Ramos-Casals M, Diaz-Lagares C, Khamashta MA. Rituximab and lupus: good in real life, bad in controlled trials. Comment on the article by Lu et al. [letter]. Arthritis Rheum. 2009;61:1281–2.

    Article  CAS  PubMed  Google Scholar 

  74. Isenberg D, Appel GB, Contreras G, Dooley MA, Ginzler EM, Jayne D, et al. Influence of race/ethnicity on response to lupus nephritis treatment: the ALMS study. Rheumatol (Oxford). 2010;49:128–40.

    Article  Google Scholar 

  75. Weng MY, Weng CT, Liu MF. The efficacy of low-dose mycophenolate mofetil for treatment of lupus nephritis in Taiwanese patients with systemic lupus erythematosus. Clin Rheumatol. 2010;29:771–5.

    Article  PubMed  Google Scholar 

  76. Mitka M. Treatment for lupus, first in 50 years, offers modest benefits, hope to patients. JAMA. 2011;305:1754–5.

    Article  CAS  PubMed  Google Scholar 

  77. Collins CE, Dall’Era M, Kan H, Macahilig C, Molta C, Koscielny V, et al. Response to belimumab among patients with systemic lupus erythematosus in clinical practice settings: 24-month results from the OBSErve study in the USA. Lupus Sci Med. 2016;3:e000118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Niewold TB. Connective tissue diseases: targeting type I interferon in systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12:377–8.

    Article  CAS  PubMed  Google Scholar 

  79. Richman IB, Taylor KE, Chung SA, Trupin L, Petri M, Yelin E, et al. European genetic ancestry is associated with a decreased risk of lupus nephritis. Arthritis Rheum. 2012;64:3374–82.

    Article  PubMed  Google Scholar 

  80. Golder V, Connelly K, Staples M, Morand E, Hoi A. Association of Asian ethnicity with disease activity in SLE: an observational study from the Monash Lupus Clinic. Lupus. 2013;22:1425–30.

    Article  CAS  PubMed  Google Scholar 

  81. Peschken CA, Katz SJ, Silverman E, Pope JE, Fortin PR, Pineau C, et al. The 1000 Canadian faces of lupus: determinants of disease outcome in a large multiethnic cohort. J Rheumatol. 2009;36:1200–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy B. Niewold.

Ethics declarations

Funding

No sources of funding were used to support the writing of this article.

Conflict of interest

Dr Sinicato, Dr Postal, and Dr Appenzeller have no conflicts to declare. Dr Niewold received research grants from EMD Serono and Janssen, Inc. These companies had no role in the preparation of this manuscript.

Grants

S. Appenzeller: Fundação Apoio À Pesquisa Estado São Paulo-Brasil (FAPESP 2008/02917-0, 2009/06049-6, and 2009/15286-1), Conselho Nacional Pesquisa Desenvolvimento-Brasil CNPq (300447/2009-4, 471343/2011-0, 302205/2012-8, and 473328/2013-5).

T.B. Niewold: National Institutes of Health (NIH) Grants (AR060861, AR057781, AR065964, and AI071651), Alliance for Lupus Research, Rheumatology Research Foundation, Cure JM Foundation, The Myositis Foundation, the Mayo Clinic Foundation, the Lupus Research Institute, and the Lupus Foundation of Minnesota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinicato, N.A., Postal, M., Appenzeller, S. et al. Defining Biological Subsets in Systemic Lupus Erythematosus: Progress Toward Personalized Therapy. Pharm Med 31, 81–88 (2017). https://doi.org/10.1007/s40290-017-0178-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40290-017-0178-6

Keywords

Navigation