Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of juvenile idiopathic arthritis: hitting the target

Key Points

  • The development of biologic DMARDs has revolutionized the therapeutic management of juvenile idiopathic arthritis (JIA)

  • A treat-to-target approach combined with tight control, in which patients are frequently reassessed, can help improve disease outcomes and achieve disease remission off medication

  • Initiating intensive therapy early in the course of JIA (during the window of opportunity) is likely to improve long-term disease outcomes, and is a focus of ongoing clinical trials

  • Guidelines and consensus protocols have been pivotal in improving the management of children with JIA, but further development and investigator-led clinical trials are required, including by multinational collaborations

  • Optimal management strategies for patients with JIA can be achieved by combining guideline-led care and personalized treatment approaches, and by focusing efforts on targeted treatment

Abstract

The treatment of juvenile idiopathic arthritis (JIA) is evolving. The growing number of effective drugs has led to successful treatment and prevention of long-term sequelae in most patients. Although patients with JIA frequently achieve lasting clinical remission, sustained remission off medication is still elusive for most. Treatment approaches vary substantially among paediatric rheumatologists owing to the inherent heterogeneity of JIA and, until recently, to the lack of accepted and well-evidenced guidelines. Furthermore, many pertinent questions related to patient management remain unanswered, in particular regarding treatment targets, and selection, intensity and sequence of initiation or withdrawal of therapy. Existing JIA guidelines and recommendations do not specify treat-to-target or tight control strategies, in contrast to adult rheumatology in which these approaches have been successful. The concepts of window of opportunity (early treatment to improve long-term outcomes) and immunological remission (abrogation of subclinical disease activity) are also fundamental when defining treatment methodologies. This Review explores the application of these concepts to JIA and their possible contribution to the development of future clinical guidelines or consensus treatment protocols. The article also discusses how diverse forms of standardized, guideline-led care and personalized treatment can be combined into a targeted, patient-centred approach to optimize management strategies for patients with JIA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The armamentarium of antirheumatic drugs available for the treatment of JIA.
Figure 2: Matching evidence-based guidance to individual disease courses in clinical practice.
Figure 3: Target definition and achievement in JIA management.
Figure 4: Optimization of JIA management in clinical practice.

Similar content being viewed by others

References

  1. Prakken, B., Albani, S. & Martini, A. Juvenile idiopathic arthritis. Lancet 377, 2138–2149 (2011).

    Article  Google Scholar 

  2. Barnes, M. G. et al. Subtype-specific peripheral blood gene expression profiles in recent-onset juvenile idiopathic arthritis. Arthritis Rheum. 60, 2102–2112 (2009).

    Article  CAS  Google Scholar 

  3. van den Ham, H. J., de Jager, W., Bijlsma, J. W., Prakken, B. J. & de Boer, R. J. Differential cytokine profiles in juvenile idiopathic arthritis subtypes revealed by cluster analysis. Rheumatology (Oxford) 48, 899–905 (2009).

    Article  CAS  Google Scholar 

  4. Lehman, T. J. The future of pediatric rheumatology: many questions remain. Arthritis Rheum. 56, 2815–2816 (2007).

    Article  Google Scholar 

  5. Guzman, J. et al. The outcomes of juvenile idiopathic arthritis in children managed with contemporary treatments: results from the ReACCh-Out cohort. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-205372.

  6. Nordal, E. et al. Ongoing disease activity and changing categories in a long-term Nordic cohort study of juvenile idiopathic arthritis. Arthritis Rheum. 63, 2809–2818 (2011).

    Article  Google Scholar 

  7. Oen, K. et al. Disease course and outcome of juvenile rheumatoid arthritis in a multicenter cohort. J. Rheumatol. 29, 1989–1999 (2002).

    PubMed  Google Scholar 

  8. Selvaag, A. M. et al. Early disease course and predictors of disability in juvenile rheumatoid arthritis and juvenile spondyloarthropathy: a 3 year prospective study. J. Rheumatol. 32, 1122–1130 (2005).

    PubMed  Google Scholar 

  9. Wallace, C. A., Huang, B., Bandeira, M., Ravelli, A. & Giannini, E. H. Patterns of clinical remission in select categories of juvenile idiopathic arthritis. Arthritis Rheum. 52, 3554–3562 (2005).

    Article  Google Scholar 

  10. Ansell, B. M. & Swann, M. The management of chronic arthritis of children. J. Bone Joint Surg. Br. 65, 536–543 (1983).

    Article  CAS  Google Scholar 

  11. Fries, J. F. Current treatment paradigms in rheumatoid arthritis. Rheumatology (Oxford) 39 (Suppl 1), 30–35 (2000).

    Article  Google Scholar 

  12. Giannini, E. H. et al. Methotrexate in resistant juvenile rheumatoid arthritis. Results of the U.S.A.—U.S.S.R. double-blind, placebo-controlled trial. The Pediatric Rheumatology Collaborative Study Group and The Cooperative Children's Study Group. N. Engl. J. Med. 326, 1043–1049 (1992).

    Article  CAS  Google Scholar 

  13. European Medicines Agency. Successes of the Paediatric Regulation after 5 years [online], (2013).

  14. Stoll, M. L. & Cron, R. Q. Treatment of juvenile idiopathic arthritis: a revolution in care. Pediatr. Rheumatol. Online J. 12, 13 (2014).

    Article  Google Scholar 

  15. Ruperto, N., Vesely, R., Saint-Raymond, A., Martini, A. & Paediatric Rheumatology International Trials Organization (PRINTO). Impact of the European paediatric legislation in paediatric rheumatology: past, present and future. Ann. Rheum. Dis. 72, 1893–1896 (2013).

    Article  Google Scholar 

  16. Levinson, J. E. & Wallace, C. A. Dismantling the pyramid. J. Rheumatol. Suppl. 33, 6–10 (1992).

    CAS  PubMed  Google Scholar 

  17. Recommendations of the German Society of Rheumatology for therapy with tumor necrosis factor inhibitors. Pharmacotherapy Committee of the German Society of Rheumatology [German]. Z. Rheumatol. 59, 291–292 (2000).

  18. Tynjala, P. et al. Aggressive combination drug therapy in very early polyarticular juvenile idiopathic arthritis (ACUTE–JIA): a multicentre randomised open-label clinical trial. Ann. Rheum. Dis. 70, 1605–1612 (2011).

    Article  CAS  Google Scholar 

  19. Wallace, C. A. et al. Trial of early aggressive therapy in polyarticular juvenile idiopathic arthritis. Arthritis Rheum. 64, 2012–2021 (2012).

    Article  Google Scholar 

  20. Smolen, J. S. et al. Treating rheumatoid arthritis to target: recommendations of an international task force. Ann. Rheum. Dis. 69, 631–637 (2010).

    Article  Google Scholar 

  21. Consolaro, A. et al. Toward a treat-to-target approach in the management of juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 30, S157–S162 (2012).

    PubMed  Google Scholar 

  22. Smolen, J. S. Treat-to-target: rationale and strategies. Clin. Exp. Rheumatol. 30, S2–S6 (2012).

    PubMed  Google Scholar 

  23. Schoels, M. et al. Evidence for treating rheumatoid arthritis to target: results of a systematic literature search. Ann. Rheum. Dis. 69, 638–643 (2010).

    Article  Google Scholar 

  24. Grigor, C. et al. Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. Lancet 364, 263–269 (2004).

    Article  Google Scholar 

  25. Felson, D. T. et al. American College of Rheumatology/European League against Rheumatism provisional definition of remission in rheumatoid arthritis for clinical trials. Ann. Rheum. Dis. 70, 404–413 (2011).

    Article  Google Scholar 

  26. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann. Rheum. Dis. 69, 964–975 (2010).

    Article  CAS  Google Scholar 

  27. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann. Rheum. Dis. 73, 492–509 (2014).

    Article  CAS  Google Scholar 

  28. Consolaro, A. et al. Remission, minimal disease activity, and acceptable symptom state in juvenile idiopathic arthritis: defining criteria based on the juvenile arthritis disease activity score. Arthritis Rheum. 64, 2366–2374 (2012).

    Article  Google Scholar 

  29. Wallace, C. A. et al. American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res. (Hoboken) 63, 929–936 (2011).

    Article  Google Scholar 

  30. Wallace, C. A., Ruperto, N. & Giannini, E. Preliminary criteria for clinical remission for select categories of juvenile idiopathic arthritis. J. Rheumatol. 31, 2290–2294 (2004).

    PubMed  Google Scholar 

  31. Foell, D. et al. Methotrexate withdrawal at 6 vs 12 months in juvenile idiopathic arthritis in remission: a randomized clinical trial. JAMA 303, 1266–1273 (2010).

    Article  CAS  Google Scholar 

  32. Hinze, C. et al. The role of serum S100A12 protein levels in maintaining inactive disease on anti-tumor necrosis factor therapy in polyarticular forms of juvenile idiopathic arthritis [abstract A68]. Arthritis Rheumatol. 66 (Suppl. 11), S99–S100 (2014).

    Article  Google Scholar 

  33. Hinze, C. et al. The role of serum S100A12 protein levels in disease flare after withdrawal of anti-tumor necrosis factor therapy in polyarticular forms of juvenile idiopathic arthritis [abstract A12]. Arthritis Rheumatol. 66 (Suppl. 11), S19–S20 (2014).

    Article  Google Scholar 

  34. Prevoo, M. L. et al. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 38, 44–48 (1995).

    Article  CAS  Google Scholar 

  35. Consolaro, A. et al. Development and validation of a composite disease activity score for juvenile idiopathic arthritis. Arthritis Rheum. 61, 658–666 (2009).

    Article  Google Scholar 

  36. Bulatovic Calasan, M., de Vries, L. D., Vastert, S. J., Heijstek, M. W. & Wulffraat, N. M. Interpretation of the Juvenile Arthritis Disease Activity Score: responsiveness, clinically important differences and levels of disease activity in prospective cohorts of patients with juvenile idiopathic arthritis. Rheumatology (Oxford) 53, 307–312 (2014).

    Article  Google Scholar 

  37. McErlane, F. et al. Validity of a three-variable Juvenile Arthritis Disease Activity Score in children with new-onset juvenile idiopathic arthritis. Ann. Rheum. Dis. 72, 1983–1988 (2013).

    Article  Google Scholar 

  38. Wittkowski, H. et al. S100A12 is a novel molecular marker differentiating systemic-onset juvenile idiopathic arthritis from other causes of fever of unknown origin. Arthritis Rheum. 58, 3924–3931 (2008).

    Article  CAS  Google Scholar 

  39. Gerss, J. et al. Phagocyte-specific S100 proteins and high-sensitivity C reactive protein as biomarkers for a risk-adapted treatment to maintain remission in juvenile idiopathic arthritis: a comparative study. Ann. Rheum. Dis. 71, 1991–1997 (2012).

    Article  CAS  Google Scholar 

  40. Miossec, P. et al. Biomarkers and personalised medicine in rheumatoid arthritis: a proposal for interactions between academia, industry and regulatory bodies. Ann. Rheum. Dis. 70, 1713–1718 (2011).

    Article  CAS  Google Scholar 

  41. Hunter, P. J. & Wedderburn, L. R. Pediatric rheumatic disease: can molecular profiling predict the future in JIA? Nat. Rev. Rheumatol. 5, 593–594 (2009).

    Article  CAS  Google Scholar 

  42. Kessel, C., Holzinger, D. & Foell, D. Phagocyte-derived S100 proteins in autoinflammation: putative role in pathogenesis and usefulness as biomarkers. Clin. Immunol. 147, 229–241 (2013).

    Article  CAS  Google Scholar 

  43. Rothmund, F. et al. Validation of relapse risk biomarkers for routine use in patients with juvenile idiopathic arthritis. Arthritis Care Res. (Hoboken) 66, 949–955 (2014).

    Article  CAS  Google Scholar 

  44. Collado, P. et al. Detection of synovitis by ultrasonography in clinically inactive juvenile idiopathic arthritis on and off medication. Clin. Exp. Rheumatol. 32, 597–603 (2014).

    PubMed  Google Scholar 

  45. Javadi, S., Kan, J. H., Orth, R. C. & DeGuzman, M. Wrist and ankle MRI of patients with juvenile idiopathic arthritis: identification of unsuspected multicompartmental tenosynovitis and arthritis. AJR Am. J. Roentgenol. 202, 413–417 (2014).

    Article  Google Scholar 

  46. Vastert, S. J. et al. Effectiveness of first line use of recombinant IL-1RA treatment in steroid naive systemic juvenile idiopathic arthritis: results of a prospective cohort study. Arthritis Rheumatol. http://dx.doi.org/10.1002/art.38296.

  47. Nigrovic, P. A. Review: is there a window of opportunity for treatment of systemic juvenile idiopathic arthritis? Arthritis Rheumatol. 66, 1405–1413 (2014).

    Article  CAS  Google Scholar 

  48. van Rossum, M. A. et al. Long-term outcome of juvenile idiopathic arthritis following a placebo-controlled trial: sustained benefits of early sulfasalazine treatment. Ann. Rheum. Dis. 66, 1518–1524 (2007).

    Article  Google Scholar 

  49. Ting, T. V. & Lovell, D. J. Does early sulfasalazine treatment provide long-term benefits to patients with juvenile idiopathic arthritis? Nat. Clin. Pract. Rheumatol. 4, 344–345 (2008).

    Article  CAS  Google Scholar 

  50. Hissink Muller, P. C. E. et al. A comparison of three treatment strategies in recent onset DMARD naïve juvenile idiopathic arthritis: 3-months results of the BeSt for Kids-Study. Late breaking abstracts presented at the ACR Annual Meeting 2014 [online], (2014).

  51. Institute of Medicine (US) Committee on Standards for Developing Trustworthy Clinical Practice Guidelines (eds Graham, R. et al.). Clinical Practice Guidelines we can Trust (National Academies Press, 2011).

  52. McMaster, P., Rogers, D., Kerr, M. & Spencer, A. Getting guidelines to work in practice. Arch. Dis. Child. 92, 104–106 (2007).

    Article  CAS  Google Scholar 

  53. Beukelman, T. et al. 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: initiation and safety monitoring of therapeutic agents for the treatment of arthritis and systemic features. Arthritis Care Res. (Hoboken) 63, 465–482 (2011).

    Article  Google Scholar 

  54. Dueckers, G. et al. Evidence and consensus based GKJR guidelines for the treatment of juvenile idiopathic arthritis. Clin. Immunol. 142, 176–193 (2012).

    Article  CAS  Google Scholar 

  55. Martini, A. JIA in 2011: New takes on categorization and treatment. Nat. Rev. Rheumatol. 8, 67–68 (2012).

    Article  Google Scholar 

  56. Huppertz, H. I. Recommendations for juvenile idiopathic arthritis by the American College of Rheumatology: comment on the article by Beukelman. et al. Arthritis Care Res. (Hoboken) 63, 1354–1355 (2011).

    Article  Google Scholar 

  57. Ringold, S. et al. Childhood arthritis and rheumatology research alliance consensus treatment plans for new onset polyarticular juvenile idiopathic arthritis. Arthritis Care Res. (Hoboken) 66, 1063–1072 (2013).

    Article  Google Scholar 

  58. Davies, K. et al. BSPAR Standards of Care for children and young people with juvenile idiopathic arthritis. Rheumatology (Oxford) 49, 1406–1408 (2010).

    Article  Google Scholar 

  59. Wallace, C. A. Developing standards of care for patients with juvenile idiopathic arthritis. Rheumatology (Oxford) 49, 1213–1214 (2010).

    Article  Google Scholar 

  60. Hull, R. G. & British Paediatric Rheumatology Group. Guidelines for management of childhood arthritis. Rheumatology (Oxford) 40, 1309–1312 (2001).

    Article  CAS  Google Scholar 

  61. Ringold, S. et al. 2013 update of the 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: recommendations for the medical therapy of children with systemic juvenile idiopathic arthritis and tuberculosis screening among children receiving biologic medications. Arthritis Rheum. 65, 2499–2512 (2013).

    Article  Google Scholar 

  62. Eccleston, C. et al. Psychological therapies for the management of chronic and recurrent pain in children and adolescents. Cochrane Database of Systematic Reviews, Issue 12, Art. No.: CD003968. http://dx.doi.org/10.1002/14651858.CD003968.pub3.

  63. Hawke, F., Burns, J., Radford, J. A. & du Toit, V. Custom-made foot orthoses for the treatment of foot pain. Cochrane Database of Systematic Reviews, Issue 3. Art. No.: CD006801. http://dx.doi.org/10.1002/14651858.CD006801.pub2.

  64. Rome, K., Ashford, R. L. & Evans, A. Non-surgical interventions for paediatric pes planus. Cochrane Database of Systematic Reviews, Issue 7. Art. No.: CD006311. http://dx.doi.org/10.1002/14651858.CD006311.pub2.

  65. Takken, T. et al. Exercise therapy in juvenile idiopathic arthritis. Cochrane Database of Systematic Reviews, Issue 16, Art. No.: CD005954. http://dx.doi.org/10.1002/14651858.CD005954.pub2.

  66. Takken, T., Van Der Net, J. & Helders, P. J. Methotrexate for treating juvenile idiopathic arthritis. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD003129. http://dx.doi.org/10.1002/14651858.CD003129.

  67. Wallen, M. & Gillies, D. Intra-articular steroids and splints/rest for children with juvenile idiopathic arthritis and adults with rheumatoid arthritis. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD002824. http://dx.doi.org/10.1002/14651858.CD002824.pub2.

  68. Institute of Medicine (US) Committee on Quality of Health Care in America. Crossing the Quality Chasm: a New Health System for the 21st Century (National Academies Press, 2001).

  69. Goldberger, J. J. & Buxton, A. E. Personalized medicine vs guideline-based medicine. JAMA 309, 2559–2560 (2013).

    Article  CAS  Google Scholar 

  70. Krieckaert, C. L. et al. Personalised treatment using serum drug levels of adalimumab in patients with rheumatoid arthritis: an evaluation of costs and effects. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2013-204101.

  71. Malik, N. N. Biologics: personalized drugs should cut care costs. Nature 485, 582 (2012).

    Article  CAS  Google Scholar 

  72. Burnett, H. F., Regier, D. A., Feldman, B. M., Miller, F. A. & Ungar, W. J. Parents' preferences for drug treatments in juvenile idiopathic arthritis: a discrete choice experiment. Arthritis Care Res. (Hoboken) 64, 1382–1391 (2012).

    Article  Google Scholar 

  73. Becker, M. L. Pharmacogenomics in pediatric rheumatology. Curr. Opin. Rheumatol. 24, 541–547 (2012).

    Article  CAS  Google Scholar 

  74. Ellis, J. A. et al. CLARITY—Childhood Arthritis Risk factor Identification Study. Pediatr. Rheumatol. Online J. 10, 37 (2012).

    Article  Google Scholar 

  75. Oen, K. et al. Predictors of early inactive disease in a juvenile idiopathic arthritis cohort: results of a Canadian multicenter, prospective inception cohort study. Arthritis Rheum. 61, 1077–1086 (2009).

    Article  Google Scholar 

  76. Cobb, J. E., Hinks, A. & Thomson, W. The genetics of juvenile idiopathic arthritis: current understanding and future prospects. Rheumatology (Oxford) 53, 592–599 (2014).

    Article  Google Scholar 

  77. Hawtree, S., Muthana, M. & Wilson, A. G. The role of histone deacetylases in rheumatoid arthritis fibroblast-like synoviocytes. Biochem. Soc. Trans. 41, 783–788 (2013).

    Article  CAS  Google Scholar 

  78. Wellcome Trust Sanger Institute. yourgenome.org [online], (2014).

  79. Szekanecz, Z. et al. Pharmacogenetics and pharmacogenomics in rheumatology. Immunol. Res. 56, 325–333 (2013).

    Article  CAS  Google Scholar 

  80. Smith, S. L., Plant, D., Eyre, S. & Barton, A. The potential use of expression profiling: implications for predicting treatment response in rheumatoid arthritis. Ann. Rheum. Dis. 72, 1118–1124 (2013).

    Article  CAS  Google Scholar 

  81. Smolen, J. S. & Aletaha, D. Forget personalised medicine and focus on abating disease activity. Ann. Rheum. Dis. 72, 3–6 (2013).

    Article  CAS  Google Scholar 

  82. Wilke, W. S. Reply to: forget personalized medicine and focus on abating disease activity. Ann. Rheum. Dis. 72, e8 (2013).

    Article  Google Scholar 

  83. Dunn, G., Emsley, R., Liu, H. & Landau, S. Integrating biomarker information within trials to evaluate treatment mechanisms and efficacy for personalised medicine. Clin. Trials 10, 709–719 (2013).

    Article  Google Scholar 

  84. Tak, P. P. A personalized medicine approach to biologic treatment of rheumatoid arthritis: a preliminary treatment algorithm. Rheumatology (Oxford) 51, 600–609 (2012).

    Article  CAS  Google Scholar 

  85. Bendtzen, K. Personalized medicine: theranostics (therapeutics diagnostics) essential for rational use of tumor necrosis factor-α antagonists. Discov. Med. 15, 201–211 (2013).

    PubMed  Google Scholar 

  86. Spamer, M. et al. Physiotherapy for juvenile idiopathic arthritis [German]. Z. Rheumatol. 71, 387–395 (2012).

    Article  CAS  Google Scholar 

  87. Lien, G. et al. Frequency of osteopenia in adolescents with early-onset juvenile idiopathic arthritis: a long-term outcome study of one hundred five patients. Arthritis Rheum. 48, 2214–2223 (2003).

    Article  Google Scholar 

  88. Consolaro, A. & Ravelli, A. Paediatric rheumatology: juvenile idiopathic arthritis—are biologic agents effective for pain? Nat. Rev. Rheumatol. 9, 447–448 (2013).

    Article  CAS  Google Scholar 

  89. La Hausse de Lalouviere, L., Ioannou, Y. & Fitzgerald, M. Neural mechanisms underlying the pain of juvenile idiopathic arthritis. Nat. Rev. Rheumatol. 10, 205–211 (2014).

    Article  Google Scholar 

  90. Taylor, M. J. et al. Systematic review of the application of the plan-do-study-act method to improve quality in healthcare. BMJ Qual. Saf. 23, 290–298 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

F.G. is supported by the European Union Seventh Framework Programme for Research and Technological Development (FP7) grant EUTRAIN (European Translational Training for Autoimmunity & Immune Manipulation Network, ref. 289903). D.F. is supported by the FP7 grant MIAMI (Monitoring Innate Immunity in Arthritis and Mucosal Inflammation project, ref. 305266) and by a Clinical Research Award (CRA-04) from the Interdisciplinary Centre of Clinical Research (IZKF), Münster, Germany.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to the discussion of content, wrote the article and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Dirk Foell.

Ethics declarations

Competing interests

C.H. declares that he has received lecture fees from Novartis. D.F. declares that he has received lecture fees from Chugai, Novartis, Pfizer, Roche and Swedish Orphan Biovitrum. F.G. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinze, C., Gohar, F. & Foell, D. Management of juvenile idiopathic arthritis: hitting the target. Nat Rev Rheumatol 11, 290–300 (2015). https://doi.org/10.1038/nrrheum.2014.212

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing