Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Consequences of metabolic and oxidative modifications of cartilage tissue

Key Points

  • Diabetes, metabolic syndrome and chronic infections increase glycaemia, lipidaemia and cellular levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS)

  • Increased glycaemia, lipidaemia, ROS and RNS induce glycation, glycoxidation, carbonylation and nitrosylation of cartilage proteins

  • Biochemical changes in proteins compromise the anatomical organization of cartilage

  • Changes in the anatomical organization of cartilage compromise tissue visco-elasticity and, ultimately, the ability of cartilage to sustain pressure and its overall performance

  • Protein biochemical changes are an early event in cartilage degeneration

Abstract

A hallmark of chronic metabolic diseases, such as diabetes and metabolic syndrome, and oxidative stress, as occurs in chronic inflammatory and degenerative conditions, is the presence of extensive protein post-translational modifications, including glycation, glycoxidation, carbonylation and nitrosylation. These modifications have been detected on structural cartilage proteins in joints and intervertebral discs, where they are known to affect protein folding, induce protein aggregation and, ultimately, generate microanatomical changes in the proteoglycan–collagen network that surrounds chondrocytes. Many of these modifications have also been shown to promote oxidative cleavage as well as enzymatically-mediated matrix degradation. Overall, a general picture starts to emerge indicating that biochemical changes in proteins constitute an early event that compromises the anatomical organization and viscoelasticity of cartilage, thereby affecting its ability to sustain pressure and, ultimately, impeding its overall bio-performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic representation of articular cartilage.
Figure 2: Overview of the different mechanisms by which proteins can become carbonylated.
Figure 3: Step-by-step mechanisms by which advanced glycation end products (AGEs) are formed.
Figure 4: The effects of oxidative post-translational modifications on the structure of collagens and proteoglycans.

Similar content being viewed by others

References

  1. Loeser, R. F. Aging processes and the development of osteoarthritis. Curr. Opin. Rheumatol. 25, 108–113 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhuo, Q., Yang, W., Chen, J. & Wang, Y. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol. 8, 729–737 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Scharf, B. et al. Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification. Chem. Biol. 20, 922–934 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goldring, M. B. Articular cartilage degradation in osteoarthritis. HSS J. 8, 7–9 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Buckwalter, J. A., Mankin, H. J. & Grodzinsky, A. J. Articular cartilage and osteoarthritis. Instr. Course Lect. 54, 465–480 (2005).

    PubMed  Google Scholar 

  6. Wen, C. Y. et al. Collagen fibril stiffening in osteoarthritic cartilage of human beings revealed by atomic force microscopy. Osteoarthritis Cartilage 20, 916–922 (2012).

    Article  PubMed  Google Scholar 

  7. Martel-Pelletier, J., Lajeunesse, D., Fahmi, H., Tardif, G. & Pelletier, J. P. New thoughts on the pathophysiology of osteoarthritis: one more step toward new therapeutic targets. Curr. Rheumatol. Rep. 8, 30–36 (2006).

    Article  PubMed  Google Scholar 

  8. Bank, R. A., Bayliss, M. T., Lafeber, F. P., Maroudas, A. & Tekoppele, J. M. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem. J. 330, 345–351 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fujioka, R., Aoyama, T. & Takakuwa, T. The layered structure of the articular surface. Osteoarthritis Cartilage 21, 1092–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Wong, M. & Carter, D. R. Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 33, 1–13 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Wilusz, R. E., Sanchez-Adams, J. & Guilak, F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol. 39, 25–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Eyre, D. R., Weis, M. A. & Wu, J. J. Articular cartilage collagen: an irreplaceable framework? Eur. Cell. Mater. 12, 57–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Gordon, M. K. & Hahn, R. A. Collagens. Cell Tissue Res. 339, 247–257 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Kiani, C., Chen, L., Wu, Y. J., Yee, A. J. & Yang, B. B. Structure and function of aggrecan. Cell Res. 12, 19–32 (2002).

    Article  PubMed  Google Scholar 

  15. Hardingham, T. E. & Fosang, A. J. Proteoglycans: many forms and many functions. FASEB J. 6, 861–870 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Hardingham, T. E., Fosang, A. J. & Dudhia, J. The structure, function and turnover of aggrecan, the large aggregating proteoglycan from cartilage. Eur. J. Clin. Chem. Clin. Biochem. 32, 249–257 (1994).

    CAS  PubMed  Google Scholar 

  17. Aspberg, A. The different roles of aggrecan interaction domains. J. Histochem. Cytochem. 60, 987–996 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Han, E. H., Chen, S. S., Klisch, S. M. & Sah, R. L. Contribution of proteoglycan osmotic swelling pressure to the compressive properties of articular cartilage. Biophys. J. 101, 916–924 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilkins, R. J., Browning, J. A. & Ellory, J. C. Surviving in a matrix: membrane transport in articular chondrocytes. J. Membr. Biol. 177, 95–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Wilkins, R. J., Browning, J. A. & Urban, J. P. Chondrocyte regulation by mechanical load. Biorheology 37, 67–74 (2000).

    CAS  PubMed  Google Scholar 

  21. Chubinskaya, S. et al. Response of human chondrocytes prepared for autologous implantation to growth factors. J. Knee Surg. 21, 192–199 (2008).

    Article  PubMed  Google Scholar 

  22. Mobasheri, A. The future of osteoarthritis therapeutics: emerging biological therapy. Curr. Rheumatol. Rep. 15, 385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Verzijl, N. et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 275, 39027–39031 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Maroudas, A., Bayliss, M. T., Uchitel-Kaushansky, N., Schneiderman, R. & Gilav, E. Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age. Arch. Biochem. Biophys. 350, 61–71 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Eyre, D. Collagen of articular cartilage. Arthritis Res. 4, 30–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Arokoski, J. P., Jurvelin, J. S., Vaatainen, U. & Helminen, H. J. Normal and pathological adaptations of articular cartilage to joint loading. Scand. J. Med. Sci. Sports 10, 186–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Kopesky, P. W. et al. Sustained delivery of bioactive TGF-β1 from self-assembling peptide hydrogels induces chondrogenesis of encapsulated bone marrow stromal cells. J. Biomed. Mater. Res. A 102, 1275–1285 (2014).

    Article  PubMed  CAS  Google Scholar 

  28. Houard, X., Goldring, M. B. & Berenbaum, F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr. Rheumatol. Rep. 15, 375 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bucala, R. Diabetes, aging, and their tissue complications. J. Clin. Invest. 124, 1887–1888 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stadtman, E. R. & Levine, R. L. Protein oxidation. Ann. N. Y. Acad. Sci. 899, 191–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Abramson, S. B. Osteoarthritis and nitric oxide. Osteoarthritis Cartilage 16 (Suppl. 2), S15–S20 (2008).

    Article  PubMed  Google Scholar 

  32. Cai, Z. & Yan, L. J. Protein oxidative modifications: beneficial roles in disease and health. J. Biochem. Pharmacol. Res. 1, 15–26 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Curtis, J. M. et al. A. Protein carbonylation and metabolic control systems. Trends Endocrinol. Metab. 23, 399–406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Loeser, R. F., Gandhi, U., Long, D. L., Yin, W. & Chubinskaya, S. Aging and oxidative stress reduce the response of human articular chondrocytes to insulin-like growth factor-1 and osteogenic protein-1. Arthritis Rheumatol. 66, 2201–2209 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hybertson, B. M., Gao, B., Bose, S. K. & McCord, J. M. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol. Aspects Med. 32, 234–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Berlett, B. S. & Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313–20316 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Yan, L. J. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol. 2, 165–169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reddie, K. G. & Carroll, K. S. Expanding the functional diversity of proteins through cysteine oxidation. Curr. Opin. Chem. Biol. 12, 746–754 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Poole, L. B. & Nelson, K. J. Discovering mechanisms of signaling-mediated cysteine oxidation. Curr. Opin. Chem. Biol. 12, 18–24 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hohn, A., Konig, J. & Grune, T. Protein oxidation in aging and the removal of oxidized proteins. J. Proteomics 92, 132–159 (2013).

    Article  PubMed  CAS  Google Scholar 

  41. Levine, R. L., Mosoni, L., Berlett, B. S. & Stadtman, E. R. Methionine residues as endogenous antioxidants in proteins. Proc. Natl Acad. Sci. USA 93, 15036–15040 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arena, S., Salzano, A. M., Renzone, G., D'Ambrosio, C. & Scaloni, A. Non-enzymatic glycation and glycoxidation protein products in foods and diseases: an interconnected, complex scenario fully open to innovative proteomic studies. Mass Spectrom. Rev. 33, 49–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Tessier, F. J. The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathol. Biol. (Paris) 58, 214–219 (2010).

    Article  CAS  Google Scholar 

  44. Basle, E., Joubert, N. & Pucheault, M. Protein chemical modification on endogenous amino acids. Chem. Biol. 17, 213–227 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Vistoli, G. et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic. Res. 47 (Suppl. 1), 3–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Luevano-Contreras, C. & Chapman-Novakofski, K. Dietary advanced glycation end products and aging. Nutrients 2, 1247–1265 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Poulsen, M. W. et al. Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol. 60, 10–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Baraibar, M. A., Liu, L., Ahmed, E. K. & Friguet, B. Protein oxidative damage at the crossroads of cellular senescence, aging, and age-related diseases. Oxid. Med. Cell Longev. 2012, 919832 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Terman, A. & Brunk, U. T. Aging as a catabolic malfunction. Int. J. Biochem. Cell Biol. 36, 2365–2375 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Grune, T., Merker, K., Jung, T., Sitte, N. & Davies, K. J. Protein oxidation and degradation during postmitotic senescence. Free Radic. Biol. Med. 39, 1208–1215 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Schett, G. et al. Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care 36, 403–409 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Berenbaum, F. Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype. Ann. Rheum. Dis. 70, 1354–1356 (2011).

    Article  PubMed  Google Scholar 

  53. Felson, D. T., Anderson, J. J., Naimark, A., Walker, A. M. & Meenan, R. F. Obesity and knee osteoarthritis. The Framingham Study. Ann. Intern. Med. 109, 18–24 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Pottie, P. et al. Obesity and osteoarthritis: more complex than predicted! Ann. Rheum. Dis. 65, 1403–1405 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Puenpatom, R. A. & Victor, T. W. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. Postgrad. Med. 121, 9–20 (2009).

    Article  PubMed  Google Scholar 

  56. Cimmino, M. A. & Cutolo, M. Plasma glucose concentration in symptomatic osteoarthritis: a clinical and epidemiological survey. Clin. Exp. Rheumatol. 8, 251–257 (1990).

    CAS  PubMed  Google Scholar 

  57. Nieves-Plaza, M., Castro-Santana, L. E., Font, Y. M., Mayor, A. M. & Vila, L. M. Association of hand or knee osteoarthritis with diabetes mellitus in a population of Hispanics from Puerto Rico. J. Clin. Rheumatol. 19, 1–6 (2013).

    Article  PubMed  Google Scholar 

  58. Engstrom, G., Gerhardsson de Verdier, M., Rollof, J., Nilsson, P. M. & Lohmander, L. S. C-reactive protein, metabolic syndrome and incidence of severe hip and knee osteoarthritis. A population-based cohort study. Osteoarthritis Cartilage 17, 168–173 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Velasquez, M. T. & Katz, J. D. Osteoarthritis: another component of metabolic syndrome? Metab. Syndr. Relat. Disord. 8, 295–305 (2010).

    Article  PubMed  Google Scholar 

  60. Mooney, R. A., Sampson, E. R., Lerea, J., Rosier, R. N. & Zuscik, M. J. High-fat diet accelerates progression of osteoarthritis after meniscal/ligamentous injury. Arthritis Res. Ther. 13, R198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Griffin, T. M., Huebner, J. L., Kraus, V. B., Yan, Z. & Guilak, F. Induction of osteoarthritis and metabolic inflammation by a very high-fat diet in mice: effects of short-term exercise. Arthritis Rheum. 64, 443–453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Issa, R. I. & Griffin, T. M. Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation. Pathobiol. Aging Age Relat. Dis. 2, 17470 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Kayal, R. A. et al. Diabetes causes the accelerated loss of cartilage during fracture repair which is reversed by insulin treatment. Bone 44, 357–363 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Atayde, S. A. et al. Experimental diabetes modulates collagen remodelling of joints in rats. Histol. Histopathol. 27, 1471–1479 (2012).

    PubMed  Google Scholar 

  65. DeGroot, J. et al. Accumulation of advanced glycation endproducts reduces chondrocyte-mediated extracellular matrix turnover in human articular cartilage. Osteoarthritis Cartilage 9, 720–726 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Verzijl, N. et al. Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem. J. 350, 381–387 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Weiss, R. E., Gorn, A. H. & Nimni, M. E. Abnormalities in the biosynthesis of cartilage and bone proteoglycans in experimental diabetes. Diabetes 30, 670–677 (1981).

    Article  CAS  PubMed  Google Scholar 

  68. DeGroot, J. et al. Accumulation of advanced glycation end products decreases collagen turnover by bovine chondrocytes. Exp. Cell Res. 266, 303–310 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. DeGroot, J. et al. Age-related decrease in susceptibility of human articular cartilage to matrix metalloproteinase-mediated degradation: the role of advanced glycation end products. Arthritis Rheum. 44, 2562–2571 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Verzijl, N. et al. Age-related accumulation of the advanced glycation endproduct pentosidine in human articular cartilage aggrecan: the use of pentosidine levels as a quantitative measure of protein turnover. Matrix Biol. 20, 409–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Saudek, D. M. & Kay, J. Advanced glycation endproducts and osteoarthritis. Curr. Rheumatol. Rep. 5, 33–40 (2003).

    Article  PubMed  Google Scholar 

  72. Heywood, H. K., Nalesso, G., Lee, D. A. & Dell'accio, F. Culture expansion in low-glucose conditions preserves chondrocyte differentiation and enhances their subsequent capacity to form cartilage tissue in three-dimensional culture. Biores. Open Access 3, 9–18 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vos, P. A. et al. Elevation of cartilage AGEs does not accelerate initiation of canine experimental osteoarthritis upon mild surgical damage. J. Orthop. Res. 30, 1398–1404 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Soltes, L. et al. Degradative action of reactive oxygen species on hyaluronan. Biomacromolecules 7, 659–668 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Hauselmann, H. J., Stefanovic-Racic, M., Michel, B. A. & Evans, C. H. Differences in nitric oxide production by superficial and deep human articular chondrocytes: implications for proteoglycan turnover in inflammatory joint diseases. J. Immunol. 160, 1444–1448 (1998).

    CAS  PubMed  Google Scholar 

  76. Onur, T., Wu, R., Metz, L. & Dang, A. Characterisation of osteoarthritis in a small animal model of type 2 diabetes mellitus. Bone Joint Res. 3, 203–211 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsai, T. T. et al. Advanced glycation end products in degenerative nucleus pulposus with diabetes. J. Orthop. Res. 32, 238–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Mendoza, G. et al. Inhibitory effects of different antioxidants on hyaluronan depolymerization. Carbohydr. Res. 342, 96–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Taskiran, D., Stefanovic-Racic, M., Georgescu, H. & Evans, C. Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem. Biophys. Res. Commun. 200, 142–148 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Bezerra, M. M. et al. Reactive nitrogen species scavenging, rather than nitric oxide inhibition, protects from articular cartilage damage in rat zymosan-induced arthritis. Br. J. Pharmacol. 141, 172–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Mosher, T. J. & Dardzinski, B. J. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin. Musculoskelet. Radiol. 8, 355–368 (2004).

    Article  PubMed  Google Scholar 

  82. Borthakur, A. & Reddy, R. Imaging cartilage physiology. Top. Magn. Reson. Imaging 21, 291–296 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jungmann, P. M. et al. Association of metabolic risk factors with cartilage degradation assessed by T2 relaxation time at the knee: data from the osteoarthritis initiative. Arthritis Care Res. (Hoboken) 65, 1942–1950 (2013).

    Article  CAS  Google Scholar 

  84. Athanasiou, K. A. et al. Effects of diabetes mellitus on the biomechanical properties of human ankle cartilage. Clin. Orthop. Relat. Res. 368, 182–189 (1999).

    Article  Google Scholar 

  85. Verzijl, N. et al. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum. 46, 114–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Fick, J. M., Huttu, M. R., Lammi, M. J. & Korhonen, R. K. In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner. Osteoarthritis Cartilage 22, 1410–1418 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Yin, W., Park, J. I. & Loeser, R. F. Oxidative stress inhibits insulin-like growth factor-I induction of chondrocyte proteoglycan synthesis through differential regulation of phosphatidylinositol 3-kinase-Akt and MEK-ERK MAPK signaling pathways. J. Biol. Chem. 284, 31972–31981 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Iwasa, K. et al. PTEN regulates matrix synthesis in adult human chondrocytes under oxidative stress. J. Orthop. Res. 32, 231–237 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. DeGroot, J. et al. Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum. 50, 1207–1215 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Legnani, C., Terzaghi, C., Borgo, E. & Ventura, A. Management of anterior cruciate ligament rupture in patients aged 40 years and older. J. Orthop. Traumatol. 12, 177–184 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Monnier, V. M. Intervention against the Maillard reaction in vivo. Arch. Biochem. Biophys. 419, 1–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Figarola, J. L. et al. LR-90 a new advanced glycation endproduct inhibitor prevents progression of diabetic nephropathy in streptozotocin-diabetic rats. Diabetologia 46, 1140–1152 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Steenvoorden, M. M. et al. Activation of receptor for advanced glycation end products in osteoarthritis leads to increased stimulation of chondrocytes and synoviocytes. Arthritis Rheum. 54, 253–263 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Loeser, R. F. et al. Articular chondrocytes express the receptor for advanced glycation end products: potential role in osteoarthritis. Arthritis Rheum. 52, 2376–2385 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Henrotin, Y. E., Bruckner, P. & Pujol, J. P. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11, 747–755 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Rosa, S. C. et al. Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage. Arthritis Res. Ther. 11, R80 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Abramson, S. B., Berenbaum, F., Hochberg, M. C. & Moskowitz, R. W. Introduction to OARSI FDA initiative OAC special edition. Osteoarthritis Cartilage 19, 475–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Sanchez-Adams, J., Leddy, H. A., McNulty, A. L., O'Conor, C. J. & Guilak, F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr. Rheumatol. Rep. 16, 451 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Grodzinsky, A. J., Levenston, M. E., Jin, M. & Frank, E. H. Cartilage tissue remodeling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2, 691–713 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Lai, W. M., Hou, J. S. & Mow, V. C. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech Eng. 113, 245–258 (1991).

    Article  CAS  PubMed  Google Scholar 

  101. Kempson, G. E., Muir, H., Pollard, C. & Tuke, M. The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim. Biophys. Acta 297, 456–472 (1973).

    Article  CAS  PubMed  Google Scholar 

  102. Williamson, A. K., Chen, A. C., Masuda, K., Thonar, E. J. & Sah, R. L. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J. Orthop. Res. 21, 872–880 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Armstrong, C. G. & Mow, V. C. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J. Bone Joint Surg. Am. 64, 88–94 (1982).

    Article  CAS  PubMed  Google Scholar 

  104. Temple, M. M., Xue, Y., Chen, M. Q. & Sah, R. L. Interleukin-1alpha induction of tensile weakening associated with collagen degradation in bovine articular cartilage. Arthritis Rheum. 54, 3267–3276 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.H. and L.S. researched the data for the article and wrote the manuscript. All authors (J.H., N.C. and L.S.) contributed substantially to discussions of the article content, and review or editing of manuscript before submission.

Corresponding author

Correspondence to Laura Santambrogio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardin, J., Cobelli, N. & Santambrogio, L. Consequences of metabolic and oxidative modifications of cartilage tissue. Nat Rev Rheumatol 11, 521–529 (2015). https://doi.org/10.1038/nrrheum.2015.70

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.70

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing