Skip to main content
Log in

Site-Specific Molecular Diffusion in Articular Cartilage Measured using Fluorescence Recovery after Photobleaching

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Diffusive transport of solutes is critical to the normal function of articular cartilage. The diffusion of macromolecules through cartilage may be affected by the local composition and structure, which vary with depth from the tissue surface. We hypothesized that the diffusion coefficient of uncharged molecules also varies with depth and molecular size. We used fluorescence recovery after photobleaching (FRAP) to measure site-specific diffusion coefficients of fluorescent dextran molecules (3, 40, 70, and 500 kDa) in porcine articular cartilage. The diffusion coefficients measured using FRAP exhibited an inverse size dependence and were in general agreement with those measured using other techniques. The diffusion coefficients for all molecules varied significantly with depth in a manner that depended upon the size of the diffusing molecule. The diffusion coefficients for the 3 and 500 kDa dextrans were 1.6 and 2.4 times greater, respectively, in the surface zone as compared to the middle and deep zones, whereas the diffusion coefficients of the 40 and 70 kDa dextrans were 0.3 and 0.2 times lower in the surface zone as compared to the middle and deep zones. These differences may reflect variations in the structure and composition of collagen, proteoglycans, and other macromolecules among the zones.© 2003 Biomedical Engineering Society.

PAC2003: 8715Vv, 8719Rr, 8764Tt

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexopoulos, L. G, M. A. Haider, T. P. Vail, and F. Guilak. Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis. J. Biomech. Eng125:323–333, 2003.

    Google Scholar 

  2. Axelrod, D, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J16:1055–1069, 1976.

    PubMed  Google Scholar 

  3. Bayliss, M. T, M. Venn, A. Maroudas, and S. Y. Ali. Structure of proteoglycans from different layers of human articular cartilage. Biochem. J209:387–400, 1983.

    Google Scholar 

  4. Blonk, J. C. G, A. Don, H. Van Aalst, and J. J. Birmingham. Fluorescence photobleaching recovery in the confocal scanning light microscope. J. Microsc169:363–374, 1993.

    Google Scholar 

  5. Bryers, J. D, and F. Drummond. Local macromolecule diffusion coefficients in structurally non-uniform bacterial biofilms using fluorescence recovery after photobleaching (FRAP). Biotechnol. Bioeng60:462–473, 1998.

    Google Scholar 

  6. Burstein, D, M. L. Gray, A. L. Hartman, R. Gipe, and B. D. Foy. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J. Orthop. Res11:465–478, 1993.

    Google Scholar 

  7. Clague, D. S, and R. J. Phillips. Hindered diffusion of spherical macromolecules through dilute fibrous media. Phys. Fluids8:1720–1731, 1996.

    Google Scholar 

  8. Comper, W. D Physicochemical aspects of cartilage extracellular matrix. In: Cartilage: Molecular Aspects, edited by B. Hall and S. Newman. Boston: CRC Press, 1991, pp. 59–96.

    Google Scholar 

  9. Eggli, P. S, E. B. Hunziker, and R. K. Schenk. Quantitation of structural features characterizing weight-and less-weight-bearing regions in articular cartilage: A stereological analysis of medial femoral condyles in young adult rabbits. Anat. Rec222:217–227, 1988.

    PubMed  Google Scholar 

  10. Fischer, A. E, T. A. Carpenter, J. A. Tyler, and L. D. Hall. Visualization of mass transport of small organic molecules and metal ions through articular cartilage by magnetic resonance imaging. Magn. Reson. Imaging13:819–826, 1995.

    Google Scholar 

  11. Fischer, A. E, and L. D. Hall. Visualization of the diffusion of metal ions and organic molecules by magnetic resonance imaging of water. Magn. Reson. Imaging14:779–783, 1996.

    Google Scholar 

  12. Franzen, A, S. Inerot, S. O. Hejderup, and D. Heinegard. Variations in the composition of bovine hip articular cartilage with distance from the articular surface. Biochem. J195:535–543, 1981.

    Google Scholar 

  13. Gribbon, P, and T. E. Hardingham. Macromolecular diffusion of biological polymers measured by confocal fluorescence recovery after photobleaching. Biophys. J75:1032–1039, 1998.

    Google Scholar 

  14. Guilak, F, A. Ratcliffe, N. Lane, M. P. Rosenwasser, and V. C. Mow. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J. Orthop. Res.12:474–484, 1994.

    Google Scholar 

  15. Han, J, and J. Herzfeld. Macromolecular diffusion in crowded solutions. Biophys. J65:1155–1161, 1993.

    Google Scholar 

  16. Hardingham, T. E, A. J. Fosang, and J. Dudhia. The structure, function and turnover of aggrecan, the large aggregating proteoglycan from cartilage. Eur. J. Clin. Chem. Clin. Biochem32:249–257, 1994.

    Google Scholar 

  17. Heinegard, D, and A. Oldberg. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J3:2042–2051, 1989.

    Google Scholar 

  18. Hunziker, E. B., M. Michel, and D. Studer. Ultrastructure of adult human articular cartilage matrix after cryotechnical processing. Microsc. Res. Tech37:271–284, 1997.

    Google Scholar 

  19. Hwang, W. S, B. Li, L. H. Jin, K. Ngo, N. S. Schachar, and G. N. Hughes. Collagen fibril structure of normal, aging, and osteoarthritic cartilage. J. Pathol167:425–433, 1992.

    Google Scholar 

  20. Jeffery, A. K, G. W. Blunn, C. W. Archer, and G. Bentley. Three-dimensional collagen architecture in bovine articular cartilage. J. Bone Jt. Surg, Br. Vol73:795–801, 1991.

    Google Scholar 

  21. Lang, I, M. Scholz, and R. Peters. Molecular mobility and nucleocytoplasmic flux in hepatoma cells. J. Cell Biol102:1183–1190, 1986.

    PubMed  Google Scholar 

  22. Langsjo, T. K, M. Hyttinen, A. Pelttari, K. Kiraly, J. Arokoski, and H. J. Helminen. Electron microscopic stereological study of collagen fibrils in bovine articular cartilage: Volume and surface densities are best obtained indirectly (from length densities and diameters) using isotropic uniform random sampling. J. Anat195:281–293, 1999.

    Google Scholar 

  23. Lee, G. M, T. A. Paul, M. Slabaugh, and S. S. Kelley. The incidence of enlarged chondrons in normal and osteoarthritic human cartilage and their relative matrix density. Osteoarthritis Cartilage8:44–52, 2000.

    Google Scholar 

  24. Lipshitz, H, R. Etheredge, III, and M. J. Glimcher. Changes in the hexosamine content and swelling ratio of articular cartilage as functions of depth from the surface. J. Bone Jt. Surg58:1149–1153, 1976.

    Google Scholar 

  25. Luby-Phelps, K, D. L. Taylor, and F. Lanni. Probing the structure of cytoplasm. J. Cell Biol102:2015–2022, 1986.

    Google Scholar 

  26. Maroudas, A. Distribution and diffusion of solutes in articular cartilage. Biophys. J10:365–379, 1970.

    Google Scholar 

  27. Maroudas, A. Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport. Biorheology12:233–248, 1975.

    Google Scholar 

  28. Maroudas, A. Physicochemical properties of articular cartilage. In: Adult Articular Cartilage, edited by M. A. R. Freeman. Bath: Pitman Medical, 1979, pp. 215–290

    Google Scholar 

  29. Netti, P. A, D. A. Berk, M. A. Swartz, A. J. Grodzinsky, and R. K. Jain. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res60:2497–2503, 2000.

    Google Scholar 

  30. O'Hara, B. P, J. P. Urban, and A. Maroudas. Influence of cyclic loading on the nutrition of articular cartilage. Ann. Rheum. Dis49:536–539, 1990.

    Google Scholar 

  31. Papadopoulos, S, V. Endeward, B. Revesz-Walker, K. D. Jurgens, and G. Gros. Radial and longitudinal diffusion of myoglobin in single living heart and skeletal muscle cells. Proc. Natl. Acad. Sci. U.S.A98:5904–5909, 2001.

    Google Scholar 

  32. Pluen, A, Y. Boucher, S. Ramanujan, T. D. McKee, T. Gohongi, E. di Tomaso, E. B. Brown, Y. Izumi, R. B. Campbell, D. A. Berk, and R. K. Jain. Role of tumor-host interactions in interstitial diffusion of macromolecules: Cranial vs. subcutaneous tumors. Proc. Natl. Acad. Sci. U.S.A98:4628–4633, 2001.

    Google Scholar 

  33. Pluen, A, P. A. Netti, R. K. Jain, and D. A. Berk. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophys. J77:542–552, 1999.

    Google Scholar 

  34. Poole, C. A, A. Matsuoka, and J. R. Schofield. Chondrons from articular cartilage. III. Morphologic changes in the cellular microenvironment of chondrons isolated from osteoarthritic cartilage. Arthritis Rheum34:22–35, 1991.

    Google Scholar 

  35. Quinn, T. M, P. Kocian, and J. J. Meister. Static compression is associated with decreased diffusivity of dextrans in cartilage explants. Arch. Biochem. Biophys384:327–334, 2000.

    Google Scholar 

  36. Seksek, O, J. Biwersi, and A. S. Verkman. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J. Cell Biol138:131–142, 1997.

    Google Scholar 

  37. Seyedin, S. M, and D. M. Rose. Cartilage growth and differentiation factors. In: Cartilage: Molecular Aspects, edited by B. Hall and S. Newman. Boston: CRC Press, 1991, pp. 131–151

    Google Scholar 

  38. Smith, B. A, W. R. Clark, and H. M. McConnell. Anisotropic molecular motion on cell surfaces. Proc. Natl. Acad. Sci. U.S.A76:5641–5644, 1979.

    Google Scholar 

  39. Torzilli, P. A. Effects of temperature, concentration and articular surface removal on transient solute diffusion in articular cartilage. Med. Biol. Eng. Comput31:S93–98, 1993.

    Google Scholar 

  40. Torzilli, P. A, T. C. Adams, and R. J. Mis. Transient solute diffusion in articular cartilage. J. Biomech20:203–214, 1987.

    Google Scholar 

  41. Torzilli, P. A, J. M. Arduino, J. D. Gregory, and M. Bansal. Effect of proteoglycan removal on solute mobility in articular cartilage. J. Biomech30:895–902, 1997.

    Google Scholar 

  42. Torzilli, P. A, D. A. Grande, and J. M. Arduino. Diffusive properties of immature articular cartilage. J. Biomed. Mater. Res40:132–138, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leddy, H.A., Guilak, F. Site-Specific Molecular Diffusion in Articular Cartilage Measured using Fluorescence Recovery after Photobleaching. Annals of Biomedical Engineering 31, 753–760 (2003). https://doi.org/10.1114/1.1581879

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1581879

Navigation