Skip to main content

Advertisement

Log in

Dashboard Systems: Implementing Pharmacometrics from Bench to Bedside

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In recent years, there has been increasing interest in the development of medical decision-support tools, including dashboard systems. Dashboard systems are software packages that integrate information and calculations about therapeutics from multiple components into a single interface for use in the clinical environment. Given the high cost of medical care, and the increasing need to demonstrate positive clinical outcomes for reimbursement, dashboard systems may become an important tool for improving patient outcome, improving clinical efficiency and containing healthcare costs. Similarly the costs associated with drug development are also rising. The use of model-based drug development (MBDD) has been proposed as a tool to streamline this process, facilitating the selection of appropriate doses and making informed go/no-go decisions. However, complete implementation of MBDD has not always been successful owing to a variety of factors, including the resources required to provide timely modeling and simulation updates. The application of dashboard systems in drug development reduces the resource requirement and may expedite updating models as new data are collected, allowing modeling results to be available in a timely fashion. In this paper, we present some background information on dashboard systems and propose the use of these systems both in the clinic and during drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Conti R, Veenstra DL, Armstrong K, Lesko LJ, Grosse SD. Personalized medicine and genomics: challenges and opportunities in assessing effectiveness, cost-effectiveness, and future research priorities. Med Decis Mak. 2010;30:328–40.

    Article  Google Scholar 

  2. Mould DR, Upton RN. Basic concepts in population modeling, simulation and model based drug development. CPT Pharmacometrics Syst Pharmacol. 2012;26(1):e6.

    Article  Google Scholar 

  3. Zineh I, Huang S-M. Biomarkers in drug development and regulation: a paradigm for clinical implementation of personalized medicine. Biomark Med. 2011;5:705–13.

    Article  CAS  PubMed  Google Scholar 

  4. Barrett JS, Mondick JT, Narayan M, Vijayakumar K, Vijayakumar S. Integration of modeling and simulation into hospital-based decision support systems guiding pediatric pharmacotherapy. BMC Med Inform Decis Mak. 2008;8:6.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Anderson BJ, Holford NH. Understanding dosing: children are small adults, neonates are immature children. Arch Dis Child. 2013;98:737–44.

    Article  PubMed  Google Scholar 

  6. Xu Z, Davis HM, Zhou H. Rational development and utilization of antibody-based therapeutic proteins in pediatrics. Pharmacol Ther. 2013;137:225–47.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson TN, Rostami-Hodjegan A. Resurgence in the use of physiologically based pharmacokinetic models in pediatric clinical pharmacology: parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice. Paediatr Anaesth. 2011;21:291–301.

    Article  PubMed  Google Scholar 

  8. Xu Z, Mould DR, Hu C, Ford J, Keen M, Davis HM, et al. A population-based pharmacokinetic pooled analysis of infliximab in pediatrics. ACCP National Meeting, San Diego CA; 2012.

  9. Fasanmade AA, Adedokun OJ, Blank M, Zhou H, Davis HM. Pharmacokinetic properties of infliximab in children and adults with Crohn’s disease: a retrospective analysis of data from 2 phase III clinical trials. Clin Ther. 2011;33:946–64.

    Article  CAS  PubMed  Google Scholar 

  10. Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm078932.pdf. Accessed 9 May 2014.

  11. Mould DR, Green B. Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development. BioDrugs. 2010;24:23–39. doi:10.2165/11530560-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  12. Egorin MJ. Horseshoes, hand grenades, and body-surface area-based dosing: aiming for a target. J Clin Oncol. 2003;21:182–3.

    Article  PubMed  Google Scholar 

  13. Ho WR, Germain MJ, Garb J, Picard S, Mackie MK, Bartlett C, et al. Use of 12x/month haemoglobin monitoring with a computer algorithm reduces haemoglobin variability. Nephrol Dial Transplant. 2010;25:2710–4.

    Article  CAS  PubMed  Google Scholar 

  14. Miskulin DC, Weiner DE, Tighiouart H, Ladik V, Servilla K, Zager PG, et al. Computerized decision support for EPO dosing in hemodialysis patients. Am J Kidney Dis. 2009;54:1081–8.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Dashboard development and data visualization tools for effective BI. http://searchcio.techtarget.com/definition/dashboard. Accessed 3 May 2014.

  16. Sivyer A. A dose-rate calculator. Br J Radiol. 1959;32:208–9.

    Article  CAS  PubMed  Google Scholar 

  17. Tobler A, Mühlebach S. Intravenous phenytoin: a retrospective analysis of Bayesian forecasting versus conventional dosing in patients. Int J Clin Pharm. 2013;35:790–7. doi:10.1007/s11096-013-9809-5.

    Article  PubMed  Google Scholar 

  18. Felton TW, Roberts JA, Lodise TP, Van Guilder M, Boselli E, Neely MN, et al. Individualization of dosing of piperacillin for critically Ill patients: dosing software to optimize antimicrobial therapy. Antimicrob Agents Chemother. 2014.

  19. Wong C, Kumar SS, Graham GG, Begg EJ, Chin PK, Brett J, et al. Comparing dose prediction software used to manage gentamicin dosing. Intern Med J. 2013;43:519–25.

    Article  CAS  PubMed  Google Scholar 

  20. García MJ, Gavira R, Santos Buelga D, Dominguez-Gil A. Predictive performance of two phenytoin pharmacokinetic dosing programs from nonsteady state data. Ther Drug Monit. 1994;16:380–7.

    Article  PubMed  Google Scholar 

  21. Mohan M, Batty KT, Cooper JA, Wojnar-Horton RE, Ilett KF. Comparison of gentamicin dose estimates derived from manual calculations, the Australian ‘Therapeutic Guidelines: antibiotic’ nomogram and the SeBA-GEN and DoseCalc software programs. Br J Clin Pharmacol. 2004;58:521–7.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Usman M, Ashraf M, Khokhar MI, et al. Comparative pharmacokinetics of levofloxacin in healthy volunteers and in patients suffering from typhoid fever. Iran J Pharm Res. 2013;12:147–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Holford SD, Holford NHG, Anderson BJ. Online dose calculation tool for determining dosing regimens in the very young. http://www.paganz.org/sites/default/files/slides/Admin/Online%20dose%20calculation%20tool%20for%20determining%20dosing%20regimens%20in%20the%20very%20young.pdf.

  24. Mould DR, Moyer B, Amur S, Mukherjee A. The impact of new technologies on the science of clinical care and drug development. AAPS Magazine December. 2013.

  25. Papier A. Decision support in dermatology and medicine: history and recent developments. Semin Cutan Med Surg. 2012;31:153–9.

    Article  CAS  PubMed  Google Scholar 

  26. Domínguez Hernández KR, Aguilar Lasserre AA, Posada Gómez R, Palet Guzmán JA, González Sánchez BE. Development of an expert system as a diagnostic support of cervical cancer in atypical glandular cells, based on fuzzy logics and image interpretation. Comput Math Methods Med. 2013;2013:796387.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Castillo VH, Martínez-García AI, Pulido JRG. A knowledge-based taxonomy of critical factors for adopting electronic health record systems by physicians: a systematic literature review. BMC Med Inform Decis Mak. 2010;10:60–93.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Gill J. Bayesian methods: a social and behavioral sciences approach. 2nd ed. Boca Raton: Chapman and Hall; 2008. p. 56–60.

    Google Scholar 

  29. Hoeting JA, Madigan D, Raftery AE, Volinsky CT. Bayesian model averaging: a tutorial. Stat Sci. 1999;14:382–417.

    Article  Google Scholar 

  30. Mould DR, Frame B. Population pharmacokinetic-pharmacodynamic modeling of biological agents: when modeling meets reality. J Clin Pharmacol. 2010;50(9 Suppl):91S–100.

    Article  CAS  PubMed  Google Scholar 

  31. Geweke J, Whiteman C. In: Elliott, Granger, Timmermann, editors. Bayesian forecasting. Handbook of economic forecasting, volume 1 chapter 1. NY: Elsevier; 2006.

    Google Scholar 

  32. Fuchs A, Csajka C, Thoma Y, Buclin T, Widmer N. Benchmarking therapeutic drug monitoring software: a review of available computer tools. Clin Pharmacokinet. 2013;52:9–22.

    Article  CAS  PubMed  Google Scholar 

  33. RStudio Inc. Easy web applications in R. 2013. http://www.rstudio.com/shiny/.

  34. Herper M. The truly staggering cost of inventing new drugs. Forbes http://www.forbes.com/sites/matthewherper/2012/02/10/the-truly-staggering-cost-of-inventing-new-drugs/. Accessed 4 Jul 2012.

  35. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–5.

    Article  CAS  PubMed  Google Scholar 

  36. US Department of Health and Human Services, Food and Drug Administration. Critical Path Opportunities. 2006. http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/UCM077258.pdf. Accessed 5 Jul 2013.

  37. Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA, et al. Model-based drug development. Clin Pharmacol Ther. 2007;82:21–32.

    Article  CAS  PubMed  Google Scholar 

  38. Stone JA, Banfield C, Pfister M, Tannenbaum S, Allerheiligen S, Wetherington JD, et al. Model-based drug development survey finds pharmacometrics impacting decision making in the pharmaceutical industry. J Clin Pharmacol. 2010;50(9 Suppl):20S–30.

    Article  PubMed  Google Scholar 

  39. Jelliffe RW, Schumitzky A, Van Guilder M, Liu M, Hu L, Maire P, et al. Individualizing drug dosage regimens: roles of population pharmacokinetic and dynamic models, Bayesian fitting, and adaptive control. Ther Drug Monit. 1993;15:380–93.

    Article  CAS  PubMed  Google Scholar 

  40. Chow SC, Corey R. Benefits, challenges and obstacles of adaptive clinical trial designs. Orphanet J Rare Dis. 2011;6:79.

    Article  PubMed Central  PubMed  Google Scholar 

  41. FDA Draft Guidance for Industry. Adaptive design clinical trials for drugs and biologics. Rockville: The United State Food and Drug Administration; 2010.

    Google Scholar 

  42. Zhang L, Pfister M, Meibohm B. Concepts and challenges in quantitative pharmacology and model-based drug development. AAPS J. 2008;10:552–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wetherington JD, Pfister M, Banfield C, Stone JA, Krishna R, Allerheiligen S, et al. Model-based drug development: strengths, weaknesses, opportunities, and threats for broad application of pharmacometrics in drug development. J Clin Pharmacol. 2010;50(9 Suppl):31S–46.

    Article  CAS  PubMed  Google Scholar 

  44. Ordas I, Mould DR, Feagan BG, Sandborn WJ. Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmocokinetics based dosing paradigms. Clin Pharmacol Ther. 2012;91:635–46.

    Article  CAS  PubMed  Google Scholar 

  45. Seow CH, Newman A, Irwin SP, Steinhart AH, Silverberg MS, Greenberg GR. Trough serum infliximab: a predictive factor of clinical outcome for infliximab treatment in acute ulcerative colitis. Gut. 2010;59:49–54.

    Article  CAS  PubMed  Google Scholar 

  46. Ash AS, Ellis RP. Risk-adjusted payment and performance assessment for primary care med care. Med Care. 2012;50:643–53.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Felson DT, Smolen JS, Wells G, et al. American College of Rheumatology/European League against Rheumatism provisional definition of remission in rheumatoid arthritis for clinical trials. Ann Rheum Dis. 2011;70:404–13.

    Article  PubMed  Google Scholar 

  48. O’Dell JR, Leff R, Paulsen G, et al. Treatment of rheumatoid arthritis with methotrexate and hydroxychloroquine, methotrexate and sulfasalazine, or a combination of the three medications: results of a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002;46:1164–70.

    Article  PubMed  Google Scholar 

  49. Korpela M, Laasonen L, Hannonen P, et al. Retardation of joint damage in patients with early rheumatoid arthritis by initial aggressive treatment with disease-modifying antirheumatic drugs: five-year experience from the FIN-RACo study. Arthritis Rheum. 2004;50:2072–81.

    Article  CAS  PubMed  Google Scholar 

  50. Landewe RB, Boers M, Verhoeven AC, et al. COBRA combination therapy in patients with early rheumatoid arthritis: long-term structural benefits of a brief intervention. Arthritis Rheum. 2002;46:347–56.

    Article  CAS  PubMed  Google Scholar 

  51. Moreland LW, O’Dell JR, Paulus HE, et al. A randomized comparative effectiveness study of oral triple therapy versus etanercept plus methotrexate in early aggressive rheumatoid arthritis: the treatment of Early Aggressive Rheumatoid Arthritis Trial. Arthritis Rheum. 2012;64:2824–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Proudman SM, Keen HI, Stamp LK, et al. Response-driven combination therapy with conventional disease-modifying antirheumatic drugs can achieve high response rates in early rheumatoid arthritis with minimal glucocorticoid and nonsteroidal anti-inflammatory drug use. Semin Arthritis Rheum. 2007;37:99–111.

    Article  CAS  PubMed  Google Scholar 

  53. Wojciechowski J, Upton RN, Wiese MD, Foster DJ. Development of a population model of early rheumatoid arthritis disease progression treated with methotrexate, sulfasalazine and hydroxychloroquine. Sydney: Australasian Society for Clinical and Experimental Pharmacology and Toxicology; 2012.

    Google Scholar 

  54. Smith GCS, Pell JP. Parachute use to prevent death and major trauma related to gravitational challenge: systematic review of randomised controlled trials. BMJ. 2003;327:1459–61.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Donati F, Miller DR, Fiset P. Target-controlled infusion devices: are we missing much? Can J Anaesth. 2011;58:349–53. doi:10.1007/s12630-011-9454-1.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

As always, the authors are grateful to the many readers of draft versions for their valuable contributions to the manuscript.

Conflict of Interest

DR Mould is the founder and president of Projections Research Inc, a consulting company that conducts population PK and PKPD evaluations for the pharmaceutical industry. She is also founder and member of Baysient LLC, a company specializing in Dashboard systems. RN Upton is a Consultant who works with Projections Research Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane R. Mould.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mould, D.R., Upton, R.N. & Wojciechowski, J. Dashboard Systems: Implementing Pharmacometrics from Bench to Bedside. AAPS J 16, 925–937 (2014). https://doi.org/10.1208/s12248-014-9632-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9632-5

KEY WORDS

Navigation