Skip to main content
Top

05-07-2018 | Gout | Article

Mediation analysis to understand genetic relationships between habitual coffee intake and gout

Journal: Arthritis Research & Therapy

Authors: Joseph Hutton, Tahzeeb Fatima, Tanya J. Major, Ruth Topless, Lisa K. Stamp, Tony R. Merriman, Nicola Dalbeth

Publisher: BioMed Central

Abstract

Background

Increased coffee intake is associated with reduced serum urate concentrations and lower risk of gout. Specific alleles of the GCKR, ABCG2, MLXIPL, and CYP1A2 genes have been associated with both reduced coffee intake and increased serum urate in separate genome-wide association studies (GWAS). The aim of this study was to determine whether these single nucleotide polymorphisms (SNPs) influence the risk of gout through their effects on coffee consumption.

Methods

This research was conducted using the UK Biobank Resource. Data were available for 130,966 European participants aged 40–69 years. Gout status and coffee intake were tested for association with four urate-associated SNPs: GCKR (rs1260326), ABCG2 (rs2231142), MLXIPL (rs1178977), and CYP1A2 (rs2472297). Multiple regression and path analysis were used to examine whether coffee consumption mediated the effect of the SNPs on gout risk.

Results

Coffee consumption was inversely associated with gout (multivariate adjusted odds ratio (95% confidence interval (CI)) for any coffee consumption 0.75 (0.67–0.84, P = 9 × 10−7)). There was also evidence of a dose-effect with multivariate adjusted odds ratio (95% CI) per cup consumed per day of 0.85 (0.82–0.87, P = 9 × 10−32). The urate-increasing GCKR, ABCG2, MLXIPL, and CYP1A2 alleles were associated with reduced daily coffee consumption, with the strongest associations for CYP1A2 (beta −0.30, P = 8 × 10−40), and MLXIPL (beta −0.17, P = 3 × 10−8), and weaker associations for GCKR (beta −0.07, P = 3 × 10−10) and ABCG2 (beta −0.09, P = 2 × 10−9). The urate-increasing GCKR and ABCG2 alleles were associated with gout (multivariate adjusted p < 5 × 10−8 for both), but the urate-increasing MLXIPL and CYP1A2 alleles were not. In mediation analysis, the direct effects of GCKR and ABCG2 accounted for most of the total effect on gout risk, with much smaller indirect effects mediated by coffee consumption.

Conclusion

Coffee consumption is inversely associated with risk of gout. Although alleles at several SNPs associate with both lower coffee consumption and higher risk of gout, these SNPs largely influence gout risk directly, rather than indirectly through effects on coffee consumption.
Literature
1.
Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet. 2016;388(10055):2039–52.CrossRefPubMed
2.
Kottgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45(2):145–54.CrossRefPubMed
3.
Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration. urate excretion and gout Nature genetics. 2008;40(4):437–42.CrossRefPubMed
4.
Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. P Natl Acad Sci USA. 2009;106(25):10338–42.CrossRef
5.
Merriman TR. An update on the genetic architecture of hyperuricemia and gout. Arthritis research & therapy. 2015;17:98.CrossRef
6.
Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med. 2004;350(11):1093–103.CrossRefPubMed
7.
Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Alcohol intake and risk of incident gout in men: a prospective study. Lancet. 2004;363(9417):1277–81.CrossRefPubMed
8.
Kela U, Vijayvargiya R, Trivedi CP. Inhibitory effects of methylxanthines on the activity of xanthine-oxidase. Life Sci. 1980;27(22):2109–19.CrossRefPubMed
9.
Kiyohara C, Kono S, Honjo S, Todoroki I, Sakurai Y, Nishiwaki M, et al. Inverse association between coffee drinking and serum uric acid concentrations in middle-aged Japanese males. Brit. J Nutr. 1999;82(2):125–30.
10.
Choi HK, Curhan G. Coffee, tea, and caffeine consumption and serum uric acid level: the third National Health and nutrition examination survey. Arthrit Rheum-Arthr. 2007;57(5):816–21.CrossRef
11.
Zhang Y, Yang T, Zeng C, Wei J, Li H, Xiong YL, et al. Is coffee consumption associated with a lower risk of hyperuricaemia or gout? A systematic review and meta-analysis. BMJ Open. 2016;6(7):e009809.CrossRefPubMedPubMedCentral
12.
Park KY, Kim HJ, Ahn HS, Kim SH, Park EJ, Yim SY, et al. Effects of coffee consumption on serum uric acid: systematic review and meta-analysis. Semin Arthritis Rheum. 2016;45(5):580–6.CrossRefPubMed
13.
Choi HK, Willett W, Curhan G. Coffee consumption and risk of incident gout in men—a prospective study. Arthritis Rheum. 2007;56(6):2049–55.CrossRefPubMed
14.
Choi HK, Curhan G. Coffee consumption and risk of incident gout in women: the Nurses’ health study. Am J Clin Nutr. 2010;92(4):922–7.CrossRefPubMedPubMedCentral
15.
Salazar-Martinez E, Willett WC, Ascherio A, Manson JE, Leitzmann MF, Stampfer MJ, et al. Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med. 2004;140(1):1–8.CrossRefPubMed
16.
Greer F, Hudson R, Ross R, Graham T. Caffeine ingestion decreases glucose disposal during a hyperinsulinemic-euglycemic clamp in sedentary humans. Diabetes. 2001;50(10):2349–54.CrossRefPubMed
17.
Keijzers GB, De Galan BE, Tack CJ, Smits P. Caffeine can decrease insulin sensitivity in humans. Diabetes Care. 2002;25(2):364–9.CrossRefPubMed
18.
Thong FSL, Graham TE. Caffeine-induced impairment of glucose tolerance is abolished by beta-adrenergic receptor blockade in humans. J Appl Physiol. 2002;92(6):2347–52.CrossRefPubMed
19.
van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes—a systematic review. J Am Med Assoc. 2005;294(1):97–104.CrossRef
20.
Petrie HJ, Chown SE, Belfie LM, Duncan AM, McLaren DH, Conquer JA, et al. Caffeine ingestion increases the insulin response to an oral-glucose-tolerance test in obese men before and after weight loss. Am J Clin Nutr. 2004;80(1):22–8.CrossRefPubMed
21.
Wu TY, Hankinson SE, Willett WC, Giovannucci E. Caffeinated coffee, decaffeinated coffee, and caffeine in relation to plasma C-peptide levels, a marker of insulin secretion, in US women. Diabetes Care. 2005;28(6):1390–6.CrossRefPubMed
22.
Cornelis MC, Byrne EM, Esko T, Nalls MA, Ganna A, Paynter N, et al. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol Psychiatry. 2015;20(5):647–56.CrossRefPubMed
23.
Ollier W, Sprosen T, Peakman T. UK biobank: from concept to reality. Pharmacogenomics. 2005;6(6):639–46.CrossRefPubMed
24.
Collins R. UK biobank: protocol for a large-scale prospective epidemiological resource. In: Manchester: UK biobank coordinating Centre; 2007.
25.
Cadzow M, Merriman TR, Dalbeth N. Performance of gout definitions for genetic epidemiological studies: analysis of UK biobank. Arthritis Res Ther. 2017;19(1):181.CrossRefPubMedPubMedCentral
26.
Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.CrossRef
27.
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.CrossRefPubMedPubMedCentral
28.
UK Biobank touch-screen questionnaire: final version. UK: Biobank Coordinating Centre; 2006. Available from: http://​www.​ukbiobank.​ac.​uk/​wp-content/​uploads/​2011/​06/​Touch_​screen_​questionnaire.​pdf.
29.
Perera V, Gross AS, McLachlan AJ. Measurement of CYP1A2 activity: a focus on caffeine as a probe. Curr Drug Metab. 2012;13(5):667–78.CrossRefPubMed
30.
Thorn CF, Aklillu E, Klein TE, Altman RB. PharmGKB summary: very important pharmacogene information for CYP1A2. Pharmacogenet Genomics. 2012;22(1):73–7.CrossRefPubMedPubMedCentral
31.
Cornelis MC, Kacprowski T, Menni C, Gustafsson S, Pivin E, Adamski J, et al. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Hum Mol Genet. 2016;25(24):5472–82.PubMed
32.
Clarke TK AM, Davies G, Howard DM, Hall, LS, Padmanabhan S, Murray A, Smith B, Campbell A, Hayward C, Porteous D, Deary IJ, McIntosh AM. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK biobank (N=112,117). 2017.
33.
Rasheed H, Stamp LK, Dalbeth N, Merriman TR. Interaction of the GCKR and A1CF loci with alcohol consumption to influence the risk of gout. Arthritis Res Ther. 2017;19(1):161.CrossRefPubMedPubMedCentral
34.
Larsson SC, Carlstrom M. Coffee consumption and gout: a Mendelian randomisation study. Ann Rheum Dis. 2018. https://​doi.​org/​10.​1136/​annrheumdis-2018-213055. [Epub ahead of print].
35.
Robinson PC, Choi HK, Do R, Merriman TR. Insight into rheumatological cause and effect through the use of Mendelian randomization. Nat Rev Rheumatol. 2017;13(3):193.CrossRefPubMed
36.
Galante J, Adamska L, Young A, Young H, Littlejohns TJ, Gallacher J, et al. The acceptability of repeat internet-based hybrid diet assessment of previous 24-h dietary intake: administration of the Oxford WebQ in UK biobank. Br J Nutr. 2016;115(4):681–6.CrossRefPubMed