Skip to main content
Top

01-06-2018 | Gout | Article

Comorbidity in gout at the time of first diagnosis: sex differences that may have implications for dosing of urate lowering therapy

Journal: Arthritis Research & Therapy

Authors: Panagiota Drivelegka, Valgerdur Sigurdardottir, Anna Svärd, Lennart T. H. Jacobsson, Mats Dehlin

Publisher: BioMed Central

Abstract

Background

The aim of this study is to examine the occurrence of comorbidities at the time of first diagnosis of gout compared with matched population controls, overall and by sex, as well as to examine the crude and age-standardized prevalence of these comorbidities in men and women with gout at first diagnosis.

Methods

A population-based study used data from Swedish national and regional registers, including 14,113 gout patients aged ≥ 20 years, with a first recorded diagnosis of gout between 1 January 2006 and 31 December 2012, and 65,782 population controls, matched by age, sex and county. Prevalence ratios (95% confidence intervals) comparing gout cases and controls were calculated, overall and by sex. Crude and age-standardized prevalence (95% confidence interval) of all comorbidities in gout patients were calculated, to show differences between sexes, taking also the higher age at diagnosis in women into account.

Results

All examined comorbidities were 1.2–2.5-fold more common in gout patients at diagnosis than in population controls in both sexes. Women with gout were on average 6 years older than men at first gout diagnosis and most comorbidities, including obesity and diuretic use, were or tended to be more frequent in women than in men. When standardizing for age, women had a higher prevalence of thromboembolism (6.6% vs 5.2%) and chronic obstructive pulmonary disease (3.1% vs 2.4%). Men, on the other hand, had a higher prevalence of coronary heart disease (9.4% vs 6.4%), atrial fibrillation (9.0% vs 6.0%), congestive heart failure (7.7% vs 6.6%) and stroke (4.1% vs 3.3%).

Conclusions

The occurrence of most comorbidities was significantly increased at first diagnosis of gout in both sexes. Women were older at diagnosis and had higher occurrence of most comorbidities, including obesity and diuretic use, factors that increase serum urate, and this needs to be taken into account when starting and optimizing urate lowering therapy. These sex differences were attenuated when standardizing for age and the occurrence of cardiovascular diseases was actually higher in men.
Literature
1.
Kuo CF, Grainge MJ, Zhang W, Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol. 2015;11(11):649–62.CrossRefPubMed
2.
Kuo CF, Yu KH, See LC, Chou IJ, Tseng WY, Chang HC, et al. Elevated risk of mortality among gout patients: a comparison with the national population in Taiwan. Joint Bone Spine. 2011;78(6):577–80.CrossRefPubMed
3.
Kuo CF, See LC, Luo SF, Ko YS, Lin YS, Hwang JS, et al. Gout: an independent risk factor for all-cause and cardiovascular mortality. Rheumatology (Oxford). 2010;49(1):141–6.CrossRef
4.
Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;116(8):894–900.CrossRefPubMed
5.
Hueskes BA, Roovers EA, Mantel-Teeuwisse AK, Janssens HJ, van de Lisdonk EH, Janssen M. Use of diuretics and the risk of gouty arthritis: a systematic review. Semin Arthritis Rheum. 2012;41(6):879–89.CrossRefPubMed
6.
Bruderer S, Bodmer M, Jick SS, Meier CR. Use of diuretics and risk of incident gout: a population-based case-control study. Arthritis Rheumatol. 2014;66(1):185–96.CrossRefPubMed
7.
Roughley MJ, Belcher J, Mallen CD, Roddy E. Gout and risk of chronic kidney disease and nephrolithiasis: meta-analysis of observational studies. Arthritis Res Ther. 2015;17:90.CrossRefPubMedPubMedCentral
8.
Fathallah-Shaykh SA, Cramer MT. Uric acid and the kidney. Pediatr Nephrol. 2014;29(6):999–1008.CrossRefPubMed
9.
Juraschek SP, Kovell LC, Miller ER 3rd, Gelber AC. Association of kidney disease with prevalent gout in the United States in 1988-1994 and 2007-2010. Semin Arthritis Rheum. 2013;42(6):551–61.CrossRefPubMedPubMedCentral
10.
Prasad Sah OS, Qing YX. Associations between hyperuricemia and chronic kidney disease: a review. Nephrourol Mon. 2015;7(3):e27233.CrossRefPubMedPubMedCentral
11.
Avram Z, Krishnan E. Hyperuricaemia—where nephrology meets rheumatology. Rheumatology (Oxford). 2008;47(7):960–4.CrossRef
12.
Yu KH, Kuo CF, Luo SF, See LC, Chou IJ, Chang HC, et al. Risk of end-stage renal disease associated with gout: a nationwide population study. Arthritis Res Ther. 2012;14(2):R83.CrossRefPubMedPubMedCentral
13.
Feig DI. Serum uric acid and the risk of hypertension and chronic kidney disease. Curr Opin Rheumatol. 2014;26(2):176–85.CrossRefPubMed
14.
Johnson RJ, Nakagawa T, Jalal D, Sanchez-Lozada LG, Kang DH, Ritz E. Uric acid and chronic kidney disease: which is chasing which? Nephrol Dial Transplant. 2013;28(9):2221–8.CrossRefPubMedPubMedCentral
15.
Haslam DW, James WP. Obesity. Lancet. 2005;366(9492):1197–209.CrossRefPubMed
16.
Gheita TA, El-Fishawy HS, Nasrallah MM, Hussein H. Insulin resistance and metabolic syndrome in primary gout: relation to punched-out erosions. Int J Rheum Dis. 2012;15(6):521–5.CrossRefPubMed
17.
Clive DM. Renal transplant-associated hyperuricemia and gout. J Am Soc Nephrol. 2000;11(5):974–9.PubMed
18.
Neal DA, Tom BD, Gimson AE, Gibbs P, Alexander GJ. Hyperuricemia, gout, and renal function after liver transplantation. Transplantation. 2001;72(10):1689–91.CrossRefPubMed
19.
Schwab P, Lipton S, Kerr GS. Rheumatologic sequelae and challenges in organ transplantation. Best Pract Res Clin Rheumatol. 2010;24(3):329–40.CrossRefPubMed
20.
Stamp L, Ha L, Searle M, O'Donnell J, Frampton C, Chapman P. Gout in renal transplant recipients. Nephrology (Carlton). 2006;11(4):367–71.CrossRef
21.
Merola JF, Wu S, Han J, Choi HK, Qureshi AA. Psoriasis, psoriatic arthritis and risk of gout in US men and women. Ann Rheum Dis. 2015;74(8):1495–500.CrossRefPubMed
22.
Kwon HH, Kwon IH, Choi JW, Youn JI. Cross-sectional study on the correlation of serum uric acid with disease severity in Korean patients with psoriasis. Clin Exp Dermatol. 2011;36(5):473–8.CrossRefPubMed
23.
Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Alcohol intake and risk of incident gout in men: a prospective study. Lancet. 2004;363(9417):1277–81.CrossRefPubMed
24.
Tu HP, Tung YC, Tsai WC, Lin GT, Ko YC, Lee SS. Alcohol-related diseases and alcohol dependence syndrome is associated with increased gout risk: a nationwide population-based cohort study. Joint Bone Spine. 2017;84(2):189–96.CrossRefPubMed
25.
Abbott RD, Brand FN, Kannel WB, Castelli WP. Gout and coronary heart disease: the Framingham Study. J Clin Epidemiol. 1988;41(3):237–42.CrossRefPubMed
26.
Krishnan E, Baker JF, Furst DE, Schumacher HR. Gout and the risk of acute myocardial infarction. Arthritis Rheum. 2006;54(8):2688–96.CrossRefPubMed
27.
Gelber AC, Klag MJ, Mead LA, Thomas J, Thomas DJ, Pearson TA, et al. Gout and risk for subsequent coronary heart disease. The Meharry-Hopkins Study. Arch Intern Med. 1997;157(13):1436–40.CrossRefPubMed
28.
Janssens HJ, van de Lisdonk EH, Bor H, van den Hoogen HJ, Janssen M. Gout, just a nasty event or a cardiovascular signal? A study from primary care. Fam Pract. 2003;20(4):413–6.CrossRefPubMed
29.
Teng GG, Ang LW, Saag KG, Yu MC, Yuan JM, Koh WP. Mortality due to coronary heart disease and kidney disease among middle-aged and elderly men and women with gout in the Singapore Chinese Health Study. Ann Rheum Dis. 2012;71(6):924–8.CrossRefPubMed
30.
Seminog OO, Goldacre MJ. Gout as a risk factor for myocardial infarction and stroke in England: evidence from record linkage studies. Rheumatology (Oxford). 2013;52(12):2251–9.CrossRef
31.
Chen JH, Chuang SY, Chen HJ, Yeh WT, Pan WH. Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: a Chinese cohort study. Arthritis Rheum. 2009;61(2):225–32.CrossRefPubMed
32.
Bos MJ, Koudstaal PJ, Hofman A, Witteman JC, Breteler MM. Uric acid is a risk factor for myocardial infarction and stroke: the Rotterdam study. Stroke. 2006;37(6):1503–7.CrossRefPubMed
33.
Hozawa A, Folsom AR, Ibrahim H, Nieto FJ, Rosamond WD, Shahar E. Serum uric acid and risk of ischemic stroke: the ARIC Study. Atherosclerosis. 2006;187(2):401–7.CrossRefPubMed
34.
Clarson LE, Hider SL, Belcher J, Heneghan C, Roddy E, Mallen CD. Increased risk of vascular disease associated with gout: a retrospective, matched cohort study in the UK clinical practice research datalink. Ann Rheum Dis. 2015;74(4):642–7.CrossRefPubMed
35.
Baker JF, Schumacher HR, Krishnan E. Serum uric acid level and risk for peripheral arterial disease: analysis of data from the multiple risk factor intervention trial. Angiology. 2007;58(4):450–7.CrossRefPubMed
36.
Zhang W, Doherty M, Bardin T, Pascual E, Barskova V, Conaghan P, et al. EULAR evidence based recommendations for gout. Part II: Management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis. 2006;65(10):1312–24.CrossRefPubMedPubMedCentral
37.
Khanna D, Fitzgerald JD, Khanna PP, Bae S, Singh MK, Neogi T, et al. 2012 American College of Rheumatology guidelines for management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken). 2012;64(10):1431–46.CrossRef
38.
Jordan KM, Cameron JS, Snaith M, Zhang W, Doherty M, Seckl J, et al. British Society for Rheumatology and British Health Professionals in Rheumatology guideline for the management of gout. Rheumatology (Oxford). 2007;46(8):1372–4.CrossRef
39.
Wright DF, Duffull SB, Merriman TR, Dalbeth N, Barclay ML, Stamp LK. Predicting allopurinol response in patients with gout. Br J Clin Pharmacol. 2016;81(2):277–89.CrossRefPubMed
40.
Kannangara DRW, Graham GG, Wright DFB, Stocker SL, Portek I, Pile KD, et al. Individualising the dose of allopurinol in patients with gout. Br J Clin Pharmacol. 2017;83(9):2015–26.CrossRefPubMedPubMedCentral
41.
Zhu Y, Pandya BJ, Choi HK. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007-2008. Am J Med. 2012;125(7):679–87. e1CrossRefPubMed
42.
Primatesta P, Plana E, Rothenbacher D. Gout treatment and comorbidities: a retrospective cohort study in a large US managed care population. BMC Musculoskelet Disord. 2011;12:103.CrossRefPubMedPubMedCentral
43.
Kuo CF, Grainge MJ, Mallen C, Zhang W, Doherty M. Comorbidities in patients with gout prior to and following diagnosis: case-control study. Ann Rheum Dis. 2016;75(1):210–7.CrossRefPubMed
44.
Harrold LR, Etzel CJ, Gibofsky A, Kremer JM, Pillinger MH, Saag KG, et al. Sex differences in gout characteristics: tailoring care for women and men. BMC Musculoskelet Disord. 2017;18(1):108.CrossRefPubMedPubMedCentral
45.
Harrold LR, Yood RA, Mikuls TR, Andrade SE, Davis J, Fuller J, et al. Sex differences in gout epidemiology: evaluation and treatment. Ann Rheum Dis. 2006;65(10):1368–72.CrossRefPubMedPubMedCentral
46.
Yu TF. Some unusual features of gouty arthritis in females. Semin Arthritis Rheum. 1977;6(3):247–55.CrossRefPubMed
47.
De Souza A, Fernandes V, Ferrari AJ. Female gout: clinical and laboratory features. J Rheumatol. 2005;32(11):2186–8.PubMed
48.
Ludvigsson JF, Otterblad-Olausson P, Pettersson BU, Ekbom A. The Swedish personal identity number: possibilities and pitfalls in healthcare and medical research. Eur J Epidemiol. 2009;24(11):659–67.CrossRefPubMedPubMedCentral
49.
Dehlin M, Stasinopoulou K, Jacobsson L. Validity of gout diagnosis in Swedish primary and secondary care—a validation study. BMC Musculoskelet Disord. 2015;16:149.CrossRefPubMedPubMedCentral
50.
Andres M, Bernal JA, Sivera F, Quilis N, Carmona L, Vela P, et al. Cardiovascular risk of patients with gout seen at rheumatology clinics following a structured assessment. Ann Rheum Dis. 2017;76(7):1263–8.CrossRefPubMed
51.
De Vera MA, Rahman MM, Bhole V, Kopec JA, Choi HK. Independent impact of gout on the risk of acute myocardial infarction among elderly women: a population-based study. Ann Rheum Dis. 2010;69(6):1162–4.CrossRefPubMed
52.
Ministry of Health and Social Affairs SGO. Updated high-cost protection—outpatient care and medication. 2013. ISBN 978-91-7555-111-1.