Skip to main content
Top

24-11-2016 | Juvenile idiopathic arthritis | Article

Juvenile arthritis caused by a novel FAMIN (LACC1) mutation in two children with systemic and extended oligoarticular course

Journal: Pediatric Rheumatology

Authors: Tilmann Kallinich, Anne Thorwarth, Sae-Lim von Stuckrad, Angela Rösen-Wolff, Hella Luksch, Patrick Hundsdoerfer, Kirsten Minden, Peter Krawitz

Publisher: BioMed Central

Abstract

Background

The pathophysiological origin of juvenile idiopathic arthritis (JIA) is largely unknown. However, individuals with presumably pathogenic mutations in FAMIN have been reported, associating this gene with a rare subtype of this disorder. FAMIN, that is formerly also referred to as LACC1 or C13orf31, has recently been shown to play a crucial role in immune-metabolic functions and is involved in regulation of inflammasome activation and promotion of ROS production.

Case presentation

We describe two siblings with severe familial forms of juvenile arthritis in which whole-exome-sequencing revealed a novel homozygous frameshift mutation (NM_153218.2:c.827delC¸. p.(T276fs*2) in FAMIN.

Conclusions

The observation of a new deleterious mutation adds further evidence that pathogenic mutations in FAMIN are causal for a monogenic form of JIA. Furthermore the associated phenotype is not restricted to systemic JIA, but can also be found in other forms of familial juvenile arthritis.
Literature
1.
Bruck N, Schnabel A, Hedrich CM. Current understanding of the pathophysiology of systemic juvenile idiopathic arthritis (sJIA) and target-directed therapeutic approaches. Clin Immunol. 2015;159:72–83. doi:10.​1016/​j.​clim.​2015.​04.​018.CrossRefPubMed
2.
Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med. 2005;201:1479–86. doi:10.​1084/​jem.​20050473.CrossRefPubMedPubMedCentral
3.
de Jager W, et al. Blood and synovial fluid cytokine signatures in patients with juvenile idiopathic arthritis: a cross-sectional study. Ann Rheum Dis. 2007;66:589–98. doi:10.​1136/​ard.​2006.​061853.CrossRefPubMed
4.
Pignatti P, et al. Abnormal regulation of interleukin 6 in systemic juvenile idiopathic arthritis. J Rheumatol. 2001;28:1670–6.PubMed
5.
Wittkowski H, et al. S100A12 is a novel molecular marker differentiating systemic-onset juvenile idiopathic arthritis from other causes of fever of unknown origin. Arthritis Rheum. 2008;58:3924–31. doi:10.​1002/​art.​24137.CrossRefPubMedPubMedCentral
6.
Stock CJ, et al. Comprehensive association study of genetic variants in the IL-1 gene family in systemic juvenile idiopathic arthritis. Genes Immun. 2008;9:349–57. doi:10.​1038/​gene.​2008.​24.CrossRefPubMed
7.
Meazza C, et al. Macrophage migration inhibitory factor in patients with juvenile idiopathic arthritis. Arthritis Rheum. 2002;46:232–7. doi:10.​1002/​1529-0131(200201)46:​1<232:​:​AID-ART10059>3.​0.​CO;2-B.CrossRefPubMed
8.
Hedrich CM, Bream JH. Cell type-specific regulation of IL-10 expression in inflammation and disease. Immunol Res. 2010;47:185–206. doi:10.​1007/​s12026-009-8150-5.CrossRefPubMedPubMedCentral
9.
Ombrello MJ, et al. HLA-DRB1*11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proc Natl Acad Sci U S A. 2015;112:15970–5. doi:10.​1073/​pnas.​1520779112.CrossRefPubMedPubMedCentral
10.
Wakil SM, et al. Association of a mutation in LACC1 with a monogenic form of systemic juvenile idiopathic arthritis. Arthritis Rheum. 2015;67:288–95. doi:10.​1002/​art.​38877.CrossRef
11.
Arostegui JI, et al. A family carrying a homozygous LACC1 truncated mutation expands the clinical phenotype of this disease beyond systemic-onset juvenile idiopathic arthritis. Pediatr Rheumatol. 2015;13 Suppl 1:O76.CrossRef
12.
Cader MZ, et al. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat Immunol. 2016. doi:10.​1038/​ni.​3532.
13.
Zhang FR, et al. Genomewide association study of leprosy. N Engl J Med. 2009;361:2609–18. doi:10.​1056/​NEJMoa0903753.CrossRefPubMed
14.
Sales-Marques C, et al. NOD2 and CCDC122-LACC1 genes are associated with leprosy susceptibility in Brazilians. Hum Genet. 2014;133:1525–32. doi:10.​1007/​s00439-014-1502-9.CrossRefPubMed
15.
Grant AV, et al. Crohn’s disease susceptibility genes are associated with leprosy in the Vietnamese population. J Infect Dis. 2012;206:1763–7. doi:10.​1093/​infdis/​jis588.CrossRefPubMed
16.
Liu H, et al. Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy. Nat Genet. 2015;47:267–71. doi:10.​1038/​ng.​3212.CrossRefPubMed
17.
Franke A, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25. doi:10.​1038/​ng.​717.CrossRefPubMedPubMedCentral
18.
Jostins L, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24. doi:10.​1038/​nature11582.CrossRefPubMedPubMedCentral
19.
Patel N, et al. Study of Mendelian forms of Crohn’s disease in Saudi Arabia reveals novel risk loci and alleles. Gut. 2014;63:1831–2. doi:10.​1136/​gutjnl-2014-307859.CrossRefPubMed