Skip to main content
Top

08-05-2018 | Kawasaki disease | Review | Article

Circulating adipokines are associated with Kawasaki disease

Journal: Pediatric Rheumatology

Authors: Xin-yan Zhang, Ting-ting Yang, Xiu-fen Hu, Yu Wen, Feng Fang, Hui-ling Lu

Publisher: BioMed Central

Abstract

Background

The pathogenesis of Kawasaki disease are still not well understood. It was designed to investigate the relationship between adipokines including chemerin, omentin-1, adiponectin and acute Kawasaki disease.

Methods

Enzyme-linked immunosorbent (ELISA) was used to detect serum levels of chemerin, omentin-1, adiponectin, and inflammatory cytokines IL-1β and TNF-α in 80 cases of patients diagnosed with Kawasaki disease (KD). In addition, 20 cases of children with fever and 20 cases of healthy children were selected as febrile and normal controls.

Results

(1) Serum levels of chemerin in KD group (87.736 ± 56.310) are higher than that of both the healthy (41.746 ± 10.824) and the febrile controls (59.683 ± 18.282) (P < 0.01). (2) Circulating omentin-1 levels in Kawasaki disease group (389.773 ± 238.611) are significantly lower than that of febrile control (542.075 ± 177.995) (P < 0.01), also serum adiponectin levels in Kawasaki disease group (16.400 ± 12.243) reduced obviously compared with the febrile control group (35.074 ± 12.486). (3)Serum cytokine levels of IL-1β in Kawasaki disease group (13.656 ± 31.151) are higher than those of normal controls (2.415 ± 6.313) (P < 0.05). (4) Correlation analysis indicates that serum levels of chemerin are positively correlated with omentin-1 (r = 0.224, 95% CI 0.06–0.529, P < 0.05). Further, serum omentin-1 levels and total cholesterol (TC) are positively correlated (r = 0.358, 95% CI 0.169–0.518, P < 0.01).

Conclusions

Circulating chemerin increased significantly in the acute stage of Kawasaki disease, while omentin-1 and adiponectin levels are decreased. These adipokines are closely associated with the early inflammation and lipid metabolism disorders of acute Kawasaki disease.
Literature
1.
Newburger JW, Takahashi M, Burns JC. Kawasaki Disease. J Am Coll Cardiol. 2016;67(14):1738–49.CrossRefPubMed
2.
Denby KJ, Clark DE, Markham LW. Management of Kawasaki disease in adults. Heart. 2017;103(22):1760–9.CrossRefPubMed
3.
Son MBF. Kawasaki Disease. Pediatr Rev/Am Acad Pediatr. 2018;39(2):78–90.CrossRef
4.
McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, treatment, and long-term Management of Kawasaki Disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017;135(17):e927–99.CrossRefPubMed
5.
Takahashi K, Oharaseki T, Naoe S, Wakayama M, Yokouchi Y. Neutrophilic involvement in the damage to coronary arteries in acute stage of Kawasaki disease. Pediatr Int. 2005;47(3):305–10.CrossRefPubMed
6.
Brown TJ, Crawford SE, Cornwall ML, Garcia F, Shulman ST, Rowley AH. CD8 T lymphocytes and macrophages infiltrate coronary artery aneurysms in acute Kawasaki disease. J Infect Dis. 2001;184(7):940–3.CrossRefPubMed
7.
Tian J, An X, Niu L. Correlation between NF-kappaB signal pathway-mediated caspase-4 activation and Kawasaki disease. Exp Ther Med. 2017;13(6):3333–6.CrossRefPubMedPubMedCentral
8.
Collart MA, Baeuerle P, Vassalli P. Regulation of tumor necrosis factor alpha transcription in macrophages: involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Mol Cell Biol. 1990;10(4):1498–506.CrossRefPubMedPubMedCentral
9.
Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.CrossRefPubMedPubMedCentral
10.
Cao H. Adipocytokines in obesity and metabolic disease. J Endocrinol. 2014;220(2):T47–59.CrossRefPubMedPubMedCentral
11.
Carbone F, Mach F, Montecucco F. The role of adipocytokines in atherogenesis and atheroprogression. Curr Drug Targets. 2015;16(4):295–320.CrossRefPubMed
12.
Ouchi N, Higuchi A, Ohashi K, Oshima Y, Gokce N, Shibata R, et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science. 2010;329(5990):454–7.CrossRefPubMedPubMedCentral
13.
Fruhbeck G, Catalan V, Rodriguez A, Ramirez B, Becerril S, Salvador J, et al. Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci Rep. 2017;7(1):6619.CrossRefPubMedPubMedCentral
14.
Freitas LL, Braga VA, Do SDFS, Cruz JC, Sousa Santos SH, de Oliveira Monteiro MM, et al. Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol. 2015;6:304.
15.
Hui X, Lam KS, Vanhoutte PM, Xu A. Adiponectin and cardiovascular health: an update. Br J Pharmacol. 2012;165(3):574–90.CrossRefPubMedPubMedCentral
16.
Bednarska-Makaruk M, Graban A, Wisniewska A, Lojkowska W, Bochynska A, Gugala-Iwaniuk M, et al. Association of adiponectin, leptin and resistin with inflammatory markers and obesity in dementia. Biogerontology. 2017;18(4):561–80.CrossRefPubMedPubMedCentral
17.
Kemmotsu Y, Saji T, Kusunoki N, Tanaka N, Nishimura C, Ishiguro A, et al. Serum adipokine profiles in Kawasaki disease. Mod Rheumatol. 2012;22(1):66–72.CrossRefPubMed
18.
Kim HJ, Choi EH, Kil HR. Association between adipokines and coronary artery lesions in children with Kawasaki disease. J Korean Med Sci. 2014;29(10):1385–90.CrossRefPubMedPubMedCentral
19.
Fioravanti A, Simonini G, Cantarini L, Generoso M, Galeazzi M, Bacarelli MR, et al. Circulating levels of the adipocytokines vaspin and omentin in patients with Kawasaki disease. Rheumatol Int. 2012;32(5):1481–2.CrossRefPubMed
20.
Takeshita S, Takabayashi H, Yoshida N. Circulating adiponectin levels in Kawasaki disease. Acta Paediatr. 2006;95(10):1312–4.CrossRefPubMed
21.
Nozue H, Imai H, Saitoh H, Aoki T, Ichikawa K, Kamoda T. Serum resistin concentrations in children with Kawasaki disease. Inflamm Res. 2010;59(11):915–20.CrossRefPubMed
22.
Liu R, He B, Gao F, Qian L, Qijian Y. Relationship between adipokines and coronary artery aneurysm in children with Kawasaki disease. Transl Res. 2012;160(2):131–6.CrossRefPubMed
23.
Nagpal S, Patel S, Jacobe H, DiSepio D, Ghosn C, Malhotra M, et al. Tazarotene-induced gene 2 (TIG2), a novel retinoid-responsive gene in skin. J Invest Dermatol. 1997;109(1):91–5.CrossRefPubMed
24.
Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, Collier G, et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 2007;148(10):4687–94.CrossRefPubMed
25.
Zabel BA, Zuniga L, Ohyama T, Allen SJ, Cichy J, Handel TM, et al. Chemoattractants, extracellular proteases, and the integrated host defense response. Exp Hematol. 2006;34(8):1021–32.CrossRefPubMed
26.
Parolini S, Santoro A, Marcenaro E, Luini W, Massardi L, Facchetti F, et al. The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood. 2007;109(9):3625–32.CrossRefPubMed
27.
Landgraf K, Friebe D, Ullrich T, Kratzsch J, Dittrich K, Herberth G, et al. Chemerin as a mediator between obesity and vascular inflammation in children. J Clin Endocrinol Metab. 2012;97(4):E556–64.CrossRefPubMed
28.
Lehrke M, Becker A, Greif M, Stark R, Laubender RP, von Ziegler F, et al. Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur J Endocrinol. 2009;161(2):339–44.CrossRefPubMed
29.
Erdogan S, Yilmaz FM, Yazici O, Yozgat A, Sezer S, Ozdemir N, et al. Inflammation and chemerin in colorectal cancer. Tumour Biol. 2016;37(5):6337–42.CrossRefPubMed
30.
Dessein PH, Tsang L, Woodiwiss AJ, Norton GR, Solomon A. Circulating concentrations of the novel adipokine chemerin are associated with cardiovascular disease risk in rheumatoid arthritis. J Rheumatol. 2014;41(9):1746–54.CrossRefPubMed
31.
Kaur J, Adya R, Tan BK, Chen J, Randeva HS. Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun. 2010;391(4):1762–8.CrossRefPubMed
32.
Bozaoglu K, Curran JE, Stocker CJ, Zaibi MS, Segal D, Konstantopoulos N, et al. Chemerin, a novel adipokine in the regulation of angiogenesis. J Clin Endocrinol Metab. 2010;95(5):2476–85.CrossRefPubMedPubMedCentral
33.
Gu P, Cheng M, Hui X, Lu B, Jiang W, Shi Z. Elevating circulation chemerin level is associated with endothelial dysfunction and early atherosclerotic changes in essential hypertensive patients. J Hypertens. 2015;33(8):1624–32.CrossRefPubMed
34.
Yan Q, Zhang Y, Hong J, Gu W, Dai M, Shi J, et al. The association of serum chemerin level with risk of coronary artery disease in Chinese adults. Endocrine. 2012;41(2):281–8.CrossRefPubMed
35.
Lachine NA, Elnekiedy AA, Megallaa MH, Khalil GI, Sadaka MA, Rohoma KH, et al. Serum chemerin and high-sensitivity C reactive protein as markers of subclinical atherosclerosis in Egyptian patients with type 2 diabetes. Ther Adv Endocrinol Metab. 2016;7(2):47–56.CrossRefPubMedPubMedCentral
36.
Glowinska B, Urban M, Peczynska J, Florys B. Soluble adhesion molecules (sICAM-1, sVCAM-1) and selectins (sE selectin, sP selectin, sL selectin) levels in children and adolescents with obesity, hypertension, and diabetes. Metabolism. 2005;54(8):1020–6.CrossRefPubMed
37.
Schaffler A, Neumeier M, Herfarth H, Fürst A, Schölmerich J, Büchler C. Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochimica et Biophysica Acta (BBA) - Gene Struct Expr. 2005;1732(1–3):96–102.CrossRef
38.
Senolt L, Polanska M, Filkova M, Cerezo LA, Pavelka K, Gay S, et al. Vaspin and omentin: new adipokines differentially regulated at the site of inflammation in rheumatoid arthritis. Ann Rheum Dis. 2010;69(7):1410–1.CrossRefPubMed
39.
Menzel J, di Giuseppe R, Biemann R, Wittenbecher C, Aleksandrova K, Eichelmann F, et al. Association between chemerin, omentin-1 and risk of heart failure in the population-based EPIC-Potsdam study. Sci Rep. 2017;7(1):14171.CrossRefPubMedPubMedCentral
40.
de Souza BC, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56(6):1655–61.CrossRef
41.
Watanabe K, Watanabe R, Konii H, Shirai R, Sato K, Matsuyama TA, et al. Counteractive effects of omentin-1 against atherogenesisdagger. Cardiovasc Res. 2016;110(1):118–28.CrossRefPubMed
42.
Ohashi K, Shibata R, Murohara T, Ouchi N. Role of anti-inflammatory adipokines in obesity-related diseases. Trends Endocrinol Metab. 2014;25(7):348–55.CrossRefPubMed
43.
Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, et al. New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int. 2014;2014:658913.CrossRefPubMedPubMedCentral
44.
Shibata S, Tada Y, Hau C, Tatsuta A, Yamamoto M, Kamata M, et al. Adiponectin as an anti-inflammatory factor in the pathogenesis of psoriasis: induction of elevated serum adiponectin levels following therapy. Br J Dermatol. 2011;164(3):667–70.PubMed
45.
Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta. 2007;380(1–2):24–30.CrossRefPubMedPubMedCentral
46.
Lee Y, Schulte DJ, Shimada K, Chen S, Crother TR, Chiba N, et al. Interleukin-1beta is crucial for the induction of coronary artery inflammation in a mouse model of Kawasaki disease. Circulation. 2012;125(12):1542–50.CrossRefPubMedPubMedCentral
47.
Tremoulet AH, Jain S, Kim S, Newburger J, Arditi M, Franco A, et al. Rationale and study design for a phase I/IIa trial of anakinra in children with Kawasaki disease and early coronary artery abnormalities (the ANAKID trial). Contemp Clin Trials. 2016;48:70–5.CrossRefPubMedPubMedCentral
48.
Sanchez-Manubens J, Gelman A, Franch N, Teodoro S, Palacios JR, Rudi N, et al. A child with resistant Kawasaki disease successfully treated with anakinra: a case report. BMC Pediatr. 2017;17(1):102.CrossRefPubMedPubMedCentral
49.
Cohen S, Tacke CE, Straver B, Meijer N, Kuipers IM, Kuijpers TW. A child with severe relapsing Kawasaki disease rescued by IL-1 receptor blockade and extracorporeal membrane oxygenation. Ann Rheum Dis. 2012;71(12):2059–61.CrossRefPubMed
50.
Jialal I, Devaraj S, Kaur H, Adams-Huet B, Bremer AA. Increased chemerin and decreased omentin-1 in both adipose tissue and plasma in nascent metabolic syndrome[J]. J Clin Endocrinol Metab. 2013;98(3):E514–7.CrossRefPubMed
51.
Fukunaga H, Kishiro M, Akimoto K, Ohtsuka Y, Nagata S, Shimizu T. Imbalance of peroxisome proliferator-activated receptor gamma and adiponectin predisposes Kawasaki disease patients to developing atherosclerosis. Pediatr Int. 2010;52(5):795–800.CrossRefPubMed