Skip to main content
Top

17-11-2016 | Microbiome | Article

The lung microbiota in early rheumatoid arthritis and autoimmunity

Journal: Microbiome

Authors: Jose U. Scher, Vijay Joshua, Alejandro Artacho, Shahla Abdollahi-Roodsaz, Johan Öckinger, Susanna Kullberg, Magnus Sköld, Anders Eklund, Johan Grunewald, Jose C. Clemente, Carles Ubeda, Leopoldo N. Segal, Anca I. Catrina

Publisher: BioMed Central

Abstract

Background

Airway abnormalities and lung tissue citrullination are found in both rheumatoid arthritis (RA) patients and individuals at-risk for disease development. This suggests the possibility that the lung could be a site of autoimmunity generation in RA, perhaps in response to microbiota changes. We therefore sought to test whether the RA lung microbiome contains distinct taxonomic features associated with local and/or systemic autoimmunity.

Methods

16S rRNA gene high-throughput sequencing was utilized to compare the bacterial community composition of bronchoalveolar lavage fluid (BAL) in patients with early, disease-modifying anti-rheumatic drugs (DMARD)-naïve RA, patients with lung sarcoidosis, and healthy control subjects. Samples were further assessed for the presence and levels of anti-citrullinated peptide antibodies (including fine specificities) in both BAL and serum.

Results

The BAL microbiota of RA patients was significantly less diverse and abundant when compared to healthy controls, but similar to sarcoidosis patients. This distal airway dysbiosis was attributed to the reduced presence of several genus (i.e., Actynomyces and Burkhordelia) as well as reported periodontopathic taxa, including Treponema, Prevotella, and Porphyromonas. While multiple clades correlated with local and systemic levels of autoantibodies, the genus Pseudonocardia and various related OTUs were the only taxa overrepresented in RA BAL and correlated with higher disease activity and erosions.

Conclusions

Distal airway dysbiosis is present in untreated early RA and similar to that detected in sarcoidosis lung inflammation. This community perturbation, which correlates with local and systemic autoimmune/inflammatory changes, may potentially drive initiation of RA in a proportion of cases.
Literature
1.
McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19. doi:10.​1056/​NEJMra1004965. 10.7748/phc2011.11.21.9.29.c8797.CrossRefPubMed
2.
van de Sande MG, et al. Different stages of rheumatoid arthritis: features of the synovium in the preclinical phase. Ann Rheum Dis. 2011;70:772–7. doi:10.​1136/​ard.​2010.​139527.CrossRefPubMed
3.
Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol. 2011;7:569–78. doi:10.​1038/​nrrheum.​2011.​121.PubMedPubMedCentral
4.
Rehaume LM, et al. ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis Rheumatol. 2014;66:2780–92. doi:10.​1002/​art.​38773.CrossRefPubMed
5.
Wu HJ, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32:815–27. doi:10.​1016/​j.​immuni.​2010.​06.​001.CrossRefPubMedPubMedCentral
6.
Scher JU. Intestinal dysbiosis and potential consequences of microbiome-altering antibiotic use in the pathogenesis of human rheumatic disease. J Rheumatol. 2015;42:355–7. doi:10.​3899/​jrheum.​150036.CrossRefPubMed
7.
Scher JU, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2, e01202. doi:10.​7554/​eLife.​01202.CrossRefPubMedPubMedCentral
8.
Zhang X, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21:895–905. doi:10.​1038/​nm.​3914.CrossRefPubMed
9.
Catrina AI, Ytterberg AJ, Reynisdottir G, Malmstrom V, Klareskog L. Lungs, joints and immunity against citrullinated proteins in rheumatoid arthritis. Nat Rev Rheumatol. 2014;10:645–53. doi:10.​1038/​nrrheum.​2014.​115.CrossRefPubMed
10.
Chatzidionisyou A, Catrina AI. The lung in rheumatoid arthritis, cause or consequence? Curr Opin Rheumatol. 2016;28:76–82. doi:10.​1097/​BOR.​0000000000000238​.CrossRefPubMed
11.
Reynisdottir G, et al. Signs of immune activation and local inflammation are present in the bronchial tissue of patients with untreated early rheumatoid arthritis. Ann Rheum Dis. 2015. doi:10.​1136/​annrheumdis-2015-208216.
12.
Willis VC, et al. Sputum autoantibodies in patients with established rheumatoid arthritis and subjects at risk of future clinically apparent disease. Arthritis Rheum. 2013;65:2545–54. doi:10.​1002/​art.​38066.PubMedPubMedCentral
13.
Reynisdottir G, et al. Structural changes and antibody enrichment in the lungs are early features of anti-citrullinated protein antibody-positive rheumatoid arthritis. Arthritis Rheumatol. 2014;66:31–9. doi:10.​1002/​art.​38201.CrossRefPubMed
14.
Segal LN, et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome. 2013;1:19. doi:10.​1186/​2049-2618-1-19.CrossRefPubMedPubMedCentral
15.
Segal LN, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol. 2016;1:16031. doi:10.​1038/​nmicrobiol.​2016.​31.CrossRefPubMedPubMedCentral
16.
Arnett FC, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–24.CrossRefPubMed
17.
Olsen HH, Grunewald J, Tornling G, Skold CM, Eklund A. Bronchoalveolar lavage results are independent of season, age, gender and collection site. PLoS One. 2012;7:e43644. doi:10.​1371/​journal.​pone.​0043644.CrossRefPubMedPubMedCentral
18.
Karimi R, Tornling G, Grunewald J, Eklund A, Skold CM. Cell recovery in bronchoalveolar lavage fluid in smokers is dependent on cumulative smoking history. PLoS One. 2012;7:e34232. doi:10.​1371/​journal.​pone.​0034232.CrossRefPubMedPubMedCentral
19.
Hansson M, et al. Validation of a multiplex chip-based assay for the detection of autoantibodies against citrullinated peptides. Arthritis Res Ther. 2012;14:R201. doi:10.​1186/​ar4039.CrossRefPubMedPubMedCentral
20.
Charlson ES, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011;184:957–63. doi:10.​1164/​rccm.​201104-0655OC.CrossRefPubMedPubMedCentral
21.
Erb-Downward JR, et al. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One. 2011;6:e16384. doi:10.​1371/​journal.​pone.​0016384.CrossRefPubMedPubMedCentral
22.
Morris A, et al. Comparison of the respiratory microbiome in healthy non-smokers and smokers. Am J Respir Crit Care Med. 2013;187:1067–75. doi:10.​1164/​rccm.​201210-1913OC.CrossRefPubMedPubMedCentral
23.
Bassis CM, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio. 2015;6:e00037. doi:10.​1128/​mBio.​00037-15.CrossRefPubMedPubMedCentral
24.
Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One. 2012;7:e47305. doi:10.​1371/​journal.​pone.​0047305.CrossRefPubMedPubMedCentral
25.
Sze MA, et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185:1073–80. doi:10.​1164/​rccm.​201111-2075OC.CrossRefPubMedPubMedCentral
26.
Lozupone C, et al. Widespread colonization of the lung by tropheryma whipplei in HIV infection. Am J Respir Crit Care Med. 2013;187:1110–7. doi:10.​1164/​rccm.​201211-2145OC.CrossRefPubMedPubMedCentral
27.
Scher JU, Abramson SB. Periodontal disease, Porphyromonas gingivalis, and rheumatoid arthritis: what triggers autoimmunity and clinical disease? Arthritis Res Ther. 2013;15:122. doi:10.​1186/​ar4360.CrossRefPubMedPubMedCentral
28.
Sen R, et al. Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci U S A. 2009;106:17805–10. doi:10.​1073/​pnas.​0904827106.CrossRefPubMedPubMedCentral
29.
Yoshitomi H, et al. A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med. 2005;201:949–60. doi:10.​1084/​jem.​20041758.CrossRefPubMedPubMedCentral
30.
Scher JU, et al. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum. 2012;64:3083–94. doi:10.​1002/​art.​34539.CrossRefPubMedPubMedCentral
31.
de Aquino SG, Abdollahi-Roodsaz S, Koenders MI, van de Loo FA, Pruijn GJ, Marijnissen RJ, Walgreen B, Helsen MM, van den Bersselaar LA, de Molon RS, Avila Campos MJ, Cunha FQ, Cirelli JA, van den Berg WB. Periodontal pathogens directly promote autoimmune experimental arthritis by inducing a TLR2- and IL-1-driven Th17 response. J Immunol. 2014;192(9):4103–11.CrossRefPubMed
32.
Pischon N, et al. Association among rheumatoid arthritis, oral hygiene, and periodontitis. J Periodontol. 2008;79:979–86. doi:10.​1902/​jop.​2008.​070501.CrossRefPubMed
33.
Mikuls TR, et al. Periodontitis and Porphyromonas gingivalis in patients with rheumatoid arthritis. Arthritis Rheum. 2014. doi:10.​1002/​art.​38348.
34.
Mikuls TR, et al. Porphyromonas gingivalis and disease-related autoantibodies in individuals at increased risk of rheumatoid arthritis. Arthritis Rheum. 2012;64:3522–30. doi:10.​1002/​art.​34595.CrossRefPubMed
35.
Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The microbiome and the respiratory tract. Annu Rev Physiol. 2016;78:481–504. doi:10.​1146/​annurev-physiol-021115-105238.CrossRefPubMed
36.
Segal LN, Dickson RP. The lung microbiome in HIV. Getting to the HAART of the host-microbe interface. Am J Respir Crit Care Med. 2016;194:136–7. doi:10.​1164/​rccm.​201602-0280ED.CrossRefPubMed
37.
Salter SJ, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87. doi:10.​1186/​s12915-014-0087-z.CrossRefPubMedPubMedCentral