Skip to main content
Top

17-02-2017 | Osteoarthritis | Article

Sex differences in the association of skin advanced glycation endproducts with knee osteoarthritis progression

Journal: Arthritis Research & Therapy

Authors: Charles B. Eaton, Maria Sayeed, Syeda Ameernaz, Mary B. Roberts, John D. Maynard, Jeffrey B. Driban, Timothy E. McAlindon

Publisher: BioMed Central

Abstract

Background

The accumulation of advanced glycation endproducts in articular cartilage has been suggested as an etiologic factor in the development and progression of knee osteoarthritis (KOA).

Methods

We conducted a prospective cohort study of skin advanced glycation endproducts (sAGEs) measured non-invasively by skin intrinsic fluorescence and the relationship between sAGE KOA progression in 160 men and 287 women in a sub-cohort of the Osteoarthritis Initiative at a single site. KOA progression was measured by yearly changes in Osteoarthritis Research Society International (OARSI)-defined joint space narrowing (JSN) and by yearly changes in joint space width (JSW) from baseline to 48 months. Sex-stratified repeated measures, mixed models to account for correlation between the knees within persons and adjusted for age, body mass index (BMI), Kellgren-Lawrence (KL) grade, beam angle and rim-to-rim distance were utilized.

Results

Increasing tertiles of sAGE measured at 36 months were associated with greater JSN over 4 years in men but not in women. The percentage of knees with JSN at 48 months, by tertiles of sAGE, were 7.0%, 16.0% and 17.7% in men (p for linear trend = 0.03) and 11.4%, 14.4% and 8.4% in women (p for linear trend = 0.33). Using change in JSW as the outcome, a similar trend was found in men but it was not statistically significant in fully adjusted models and no association was found in women.

Conclusion

This study provides preliminary evidence that sAGEs independent of age and BMI, are associated with knee JSN in men but not in women.
Literature
1.
Verzijl N, Bank R, TeKoppele J, DeGroot J. AGEing and osteoarthritis: a different perspective. Curr Opin Rheumatol. 2003;15:616–22.CrossRefPubMed
2.
Monnier VM, Bautista O, Kenny D, Sell DR, Fogarty J, Dahms W, et al. Skin collagen glycation, glycoxidation, and cross linking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. Diabetes. 1999;48:870–80.CrossRefPubMedPubMedCentral
3.
Genuth S, Sun W, Cleary P, Sell DR, Dahms W, Malone J, et al. Glycation and carboxymethyllsine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes. 2005;54:3103–11.CrossRefPubMedPubMedCentral
4.
Meerwaldt R, Links TP, Graaff R, Hoogenberg K, Lefrandt JD, Baynes JW, et al. Increased accumulation of skin advanced glycation end products precedes and correlates with clinical manifestation of diabetic neuropathy. Diabetologia. 2005;48:1637–44.CrossRefPubMed
5.
Meerwaldt R, Lutgers H, Links T, Graaff R, Baynes J, Gans R, et al. Skin auto fluorescence is a strong predictor of cardiac mortality in diabetes. Diabetes Care. 2007;30:107–12.CrossRefPubMed
6.
Asif M, Egan J, Vasan S, Jyothirmayi GN, Masurekar MR, Lopez S, et al. An advanced glycation end product cross-link breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci U S A. 2000;97:2809–13.CrossRefPubMedPubMedCentral
7.
Sell DR, Monnier VM. Structure elucidation of a senescence cross-link from human extracellular matrix: implication of pentoses in the aging process. J Biol Chem. 1989;264:21597–602.PubMed
8.
Nagai R, Hayashi CM, Xia L, Takeya M, Horiuchi S. Identification in human atherosclerotic lesions of GA-pyridine, a novel structure derived from glycoladehyde-modifies proteins. J Biol Chem. 2002;277:48905–12.CrossRefPubMed
9.
Loeser R, Yammani R, Carlson C, Chen H, Cole A, Im H, et al. Articular chondrocytes express the receptor for advanced glycation end products, potential role in osteoarthritis. Arthritis Rheum. 2005;52:2376–85.CrossRefPubMedPubMedCentral
10.
DeGroot J, Verzijl N, Wenting-van M, Jacobs K, Van El B, Van Roermund P, et al. Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum. 2004;50:1207–15.CrossRefPubMed
11.
Verzijl N, DeGroot J, Zaken C, Braun-Benjamin O, Maroudas A, Bank R, et al. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage, a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum. 2002;46:114–23.CrossRefPubMed
12.
Senolt L, Braun M, Olejárová M, Forejtová S, Gatterová J, Pavelka K. Increased pentosidine, an advanced glycation end product, in serum and synovial fluid from patients with knee osteoarthritis and its relation with cartilage oligomeric matrix protein. Ann Rheum Dis. 2005;64:886–90.CrossRefPubMedPubMedCentral
13.
Vos PA, DeGroot J, Huisman AM, Oostveen JC, Marijnissen AC, Bijlsma JW, et al. Skin and urine pentosidine weakly correlate with joint damage in a cohort of patients with early signs of osteoarthritis (CHECK). Osteoarthritis Cartilage. 2010;18:1329–36.CrossRefPubMed
14.
Vos PA, Welsing PM, deGroot J, Huisman AM, Oostveen JC, Reijman M, et al. Skin pentosidine in very early hip/knee osteoarthritis (CHECK) is not a strong independent predictor of radiographic progression over 5 years follow-up. Osteoarthr Cartil. 2013;21:823–30.CrossRefPubMed
15.
Hunter DJ, LaValley M, Li J, Zhang Y, Bauer D, Nevitt M, et al. Urinary pentosidine does not predict cartilage loss among subjects with symptomatic knee OA: the BOKS study. Osteoarthr Cartil. 2007;15:93–7.CrossRefPubMed
16.
Vos PA, Mastbergen SC, Huisman AM, Boer TN, Degroot J, Polak AA, et al. In end stage osteoarthritis, cartilage tissue pentosidine levels are inversely related to parameters of cartilage damage. Osteoarthr Cartil. 2012;20:233–40.CrossRefPubMed
17.
Cleary PA, Braffett BH, Orchard T, Lyons TJ, Maynard J, Cowie C, et al. Clinical and technical factors associated with skin intrinsic fluorescence in subjects with type 1 diabetes from the DCCT/EDIC study. Diabetes Technol Ther. 2013;15:466–74.CrossRefPubMedPubMedCentral
18.
Meerwaldt R, Graaff R, Oomen PH, Links TP, Jager JJ, Alderson NL, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004;47:1324–30.CrossRefPubMed
19.
Beisswenger PJ, Howell S, Mackenzie T, Corstjens H, Muizzuddin N, Matsui MS. Two fluorescent wavelengths, 440(ex)/520(em) nm and 370(ex)/440(em) nm, reflect advanced glycation and oxidation end products in human skin without diabetes. Diabetes Technol Ther. 2012;14:285–92.CrossRefPubMed
20.
Hull EL, Ediger MN, Unione AHT, Deemer EK, Stroman ML, Baynes JW. Noninvasive, optical detection of diabetes: model studies with porcine skin. Opt Express. 2004;12:4496–510.CrossRefPubMed
21.
Maynard J, Rohrscheib M, Way J, Nguyen C, Ediger M. Noninvasive type 2 diabetes screening, superior sensitivity to fasting plasma glucose and A1C. Diabetes Care. 2007;30:1120–4.CrossRefPubMed
22.
Duryea J, Zaim S, Genant HK. New radiographic-based surrogate outcome measures for osteoarthritis of the knee. Osteoarthr Cartil. 2003;11:102–10.CrossRefPubMed
23.
The Osteoarthritis Initiative protocol for the cohort study. http://​oai.​epi-ucsf.​org/​datarelease/​docs/​StudyDesignProto​col.​pdf.
24.
Felson DT, Gale DR, Elon Gale M, Niu J, Hunter DJ, Goggins J, et al. Osteophytes and progression of knee osteoarthritis. Rheumatology (Oxford). 2005;44:100–4.CrossRef
25.
Sharp JT, Angwin J, Boers M, Duryea J, von Ingersleben G, Hall JR, et al. Computer based methods for measurement of joint space width: update of an ongoing OMERACT project. J Rheumatol. 2007;34:874–83. PMID: 17407243.PubMed
26.
Duryea J, Neumann G, Niu J, Totterman S, Tamez J, Dabrowski C, et al. Comparison of radiographic joint space width with magnetic resonance imaging cartilage morphometry: analysis of longitudinal data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2010;62:932–7.CrossRef
27.
Duryea J, Li J, Peterfy CG, Gordon C, Genant HK. Trainable rule-based algorithm for the measurement of joint space width in digital radiographic images of the knee. Med Phys. 2000;27:580–91.CrossRefPubMed
28.
Neumann G, Hunter D, Nevitt M, Chibnik LB, Kwoh K, Chen H, et al. Location specific radiographic joint space width for osteoarthritis progression. Osteoarthritis Cartilage. 2009;17:761–5.CrossRefPubMed
29.
Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G. A meta analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthr Cartil. 2005;13:769–81.CrossRefPubMed
30.
Oliveria SA, Felson DT, Reed JI, Cirillo PA, Walker AM. Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum. 1995;38:1134–41.CrossRefPubMed
31.
Maleki-Fischbach M, Jordan JM. New developments in osteoarthritis. Sex differences in magnetic resonance imaging-based biomarkers and in those of joint metabolism. Arthritis Res Ther. 2010;12:212–20.CrossRefPubMedPubMedCentral
32.
Karsdal MA, Byrjalsen I, Bay-Jensen AC, Henriksen K, Riis BJ, Christiansen C. Biochemical markers identify influences on bone and cartilage degradation in osteoarthritis- the effect of sex, Kellgren-Lawrence (KL) score, body mass index (BMI), oral salmon calcitonin (Sct) treatment and diurnal variation. BMC Musculoskelet Disord. 2010;11:125. doi:10.​1186/​1471-2474-11-125.
33.
Elliot AL, Kraus VB, Luta G, Stabler T, Renner JB, Woodward J, Dragomir AD, Helmick CG, Hockberg MC, Jordan JM. Serum hyaluronan levels and radiographic knee and hip osteoarthritis in African Americans and Caucasians in the Johnston County Osteoarthritis Project. Arthritis Rheum. 2005;52:105–11.CrossRef
34.
Karvonen-Gutierrez CA, Sowers MR, Heeringa SG. Sex dimorphism in the association of cardiometabolic characteristics and osteophytes-defined radiographic knee osteoarthritis among obese and non-obese adults: NHANES III. Osteoarthritis Cartilage. 2012;20:614.CrossRefPubMedPubMedCentral
35.
Pagura SM, Thomas SG, Woodhouse LJ, Ezzat S, Marks P. Circulating and synovial levels of IGF-I, cytokines, physical function and anthropometry differ in women awaiting total knee arthroplasty when compared to men. J Orthop Res. 2005;23:397–405.CrossRefPubMed
36.
Issa RI, Griffin TM. Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation. Pathobiol Aging Age Relat Dis. 2012;2. doi:10.​3402/​pba.​v2i0.​17470.
37.
Berenbaum F, Eymard F, Houard X. Osteoarthritis, inflammation and obesity. Curr Opin Rheumatol. 2013;25:114–8.CrossRefPubMed
38.
de Boer TN, van Spil WE, Huisman AM, Polak AA, Bijlsma JWJ, Lafeber FPJG, et al. Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthritis Cartilage. 2012;20:846–52.CrossRefPubMed
39.
Conde J, Scotece M, Gomez R, Lopez V, Gomez-Reino JJ, Gualillo O. Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis. 2011;2011:203901. doi:10.​1155/​2011/​203901. Epub 2011 Aug 18.CrossRefPubMedPubMedCentral