Skip to main content
Top

01-01-2015 | Osteoarthritis | Book Chapter | Article

7. Imaging in Osteoarthritis

Authors: Peter Salat, MD, David Salonen, MD, Andrea N. Veljkovic, MD

Publisher: Springer International Publishing

Abstract

  • Imaging of osteoarthritis (OA) can be performed with many different imaging modalities, but, in the clinical setting, the most commonly used modality is radiography.
  • Radiographic manifestations of OA mirror the pathologic changes of the disease, but the technique has well-known limitations in detecting very early disease and monitoring progression.
  • The limitations of radiographic assessment of OA may be one of the reasons behind the failure of many past DMOAD development trials.
  • MRI allows assessment of all relevant tissues in a joint affected with OA and enables characterization of tissue changes on a biochemical level and the detection of the earliest pathologic alterations of OA.
  • The clinical utility of advanced MRI techniques is limited at present with most applications being experimental and increasingly applied in DMOAD development trials.
  • Computed tomography, ultrasound, and nuclear medicine imaging have a very limited role at present in the clinical assessment of OA, but research interest in these techniques is growing and may provide additional tools in the future.
Literature
1.
Resnick D, Niwayama G, Coutts RD. Subchondral cysts (geodes) in arthritic disorders: pathologic and radiographic appearance of the hip joint. AJR Am J Roentgenol. 1977;128(5):799–806.CrossRefPubMed
2.
Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502.PubMedCentralCrossRefPubMed
3.
Kellgren JH, Jeffrey MR, Ball J. The epidemiology of chronic rheumatism: atlas of standard radiographs. Oxford: Blackwell Scientific; 1963.
4.
Lawrence JS. Rheumatism in populations. London: W.M. Heinemann Medical Books; 1977.
5.
Schiphof D, Boers M, Bierma-Zeinstra SM. Differences in descriptions of Kellgren and Lawrence grades of knee osteoarthritis. Ann Rheum Dis. 2008;67(7):1034–6.CrossRefPubMed
6.
Schiphof D, et al. Impact of different descriptions of the Kellgren and Lawrence classification criteria on the diagnosis of knee osteoarthritis. Ann Rheum Dis. 2011;70(8):1422–7.CrossRefPubMed
7.
Felson DT, et al. The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum. 1995;38(10):1500–5.CrossRefPubMed
8.
Reijman M, et al. Body mass index associated with onset and progression of osteoarthritis of the knee but not of the hip: the Rotterdam Study. Ann Rheum Dis. 2007;66(2):158–62.PubMedCentralCrossRefPubMed
9.
Felson DT, et al. Defining radiographic incidence and progression of knee osteoarthritis: suggested modifications of the Kellgren and Lawrence scale. Ann Rheum Dis. 2011;70(11):1884–6.PubMedCentralCrossRefPubMed
10.
Brouwer GM, et al. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum. 2007;56(4):1204–11.CrossRefPubMed
11.
Emrani PS, et al. Joint space narrowing and Kellgren-Lawrence progression in knee osteoarthritis: an analytic literature synthesis. Osteoarthritis Cartilage. 2008;16(8):873–82.PubMedCentralCrossRefPubMed
12.
Felson DT, et al. A new approach yields high rates of radiographic progression in knee osteoarthritis. J Rheumatol. 2008;35(10):2047–54.PubMedCentralPubMed
13.
Hunter DJ, et al. The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum. 2006;54(3):795–801.CrossRefPubMed
14.
Gale DR, et al. Meniscal subluxation: association with osteoarthritis and joint space narrowing. Osteoarthritis Cartilage. 1999;7(6):526–32.CrossRefPubMed
15.
Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage. 2007;15 Suppl A:A1–56.CrossRefPubMed
16.
Hayashi D, Jarraya M, Guermazi A, et al. Frequency and fluctuation of susceptibility artifacts in the tibiofemoral joint space in painful knees on 3T MRI and association with meniscal tears, radiographic joint space narrowing and calcifications. Arthritis Rheum. 2012;64 Suppl 10:1030.
17.
Culvenor AG, et al. Defining the presence of radiographic knee osteoarthritis: a comparison between the Kellgren and Lawrence system and OARSI atlas criteria. Knee Surg Sports Traumatol Arthrosc. 2014. [Epub ahead of print] doi:10.​1007/​s00167-014-3205-0.
18.
Felson DT, et al. Defining radiographic osteoarthritis for the whole knee. Osteoarthritis Cartilage. 1997;5(4):241–50.CrossRefPubMed
19.
Guermazi A, et al. Different thresholds for detecting osteophytes and joint space narrowing exist between the site investigators and the centralized reader in a multicenter knee osteoarthritis study–data from the Osteoarthritis Initiative. Skeletal Radiol. 2012;41(2):179–86.PubMedCentralCrossRefPubMed
20.
Nevitt MC, et al. Longitudinal performance evaluation and validation of fixed-flexion radiography of the knee for detection of joint space loss. Arthritis Rheum. 2007;56(5):1512–20.CrossRefPubMed
21.
Duryea J, et al. Comparison of radiographic joint space width with magnetic resonance imaging cartilage morphometry: analysis of longitudinal data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2010;62(7):932–7.CrossRef
22.
Reichmann WM, et al. Responsiveness to change and reliability of measurement of radiographic joint space width in osteoarthritis of the knee: a systematic review. Osteoarthritis Cartilage. 2011;19(5):550–6.PubMedCentralCrossRefPubMed
23.
Mazzuca SA, et al. Varus malalignment negates the structure-modifying benefits of doxycycline in obese women with knee osteoarthritis. Osteoarthritis Cartilage. 2010;18(8):1008–11.PubMedCentralCrossRefPubMed
24.
Kinds MB, et al. Evaluation of separate quantitative radiographic features adds to the prediction of incident radiographic osteoarthritis in individuals with recent onset of knee pain: 5-year follow-up in the CHECK cohort. Osteoarthritis Cartilage. 2012;20(6):548–56.CrossRefPubMed
25.
Felson DT, et al. Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the Multicenter Osteoarthritis Study and the Osteoarthritis Initiative. Arthritis Rheum. 2013;65(2):355–62.PubMedCentralCrossRefPubMed
26.
Than P, et al. Geometrical values of the normal and arthritic hip and knee detected with the EOS imaging system. Int Orthop. 2012;36(6):1291–7.PubMedCentralCrossRefPubMed
27.
Lazennec JY, et al. The EOS imaging system for understanding a patellofemoral disorder following THR. Orthop Traumatol Surg Res. 2011;97(1):98–101.CrossRefPubMed
28.
Lazennec JY, et al. Pelvis and total hip arthroplasty acetabular component orientations in sitting and standing positions: measurements reproductibility with EOS imaging system versus conventional radiographies. Orthop Traumatol Surg Res. 2011;97(4):373–80.CrossRefPubMed
29.
Woloszynski T, et al. Prediction of progression of radiographic knee osteoarthritis using tibial trabecular bone texture. Arthritis Rheum. 2012;64(3):688–95.CrossRefPubMed
30.
Hayashi D, et al. Detection of osteophytes and subchondral cysts in the knee with use of tomosynthesis. Radiology. 2012;263(1):206–15.CrossRefPubMed
31.
Peterfy CG, et al. MRI protocols for whole-organ assessment of the knee in osteoarthritis. Osteoarthritis Cartilage. 2006;14 Suppl A:A95–111.CrossRefPubMed
32.
Hayashi D, Guermazi A, Roemer FW. MRI of osteoarthritis: the challenges of definition and quantification. Semin Musculoskelet Radiol. 2012;16(5):419–30.CrossRefPubMed
33.
Hunter DJ, et al. Definition of osteoarthritis on MRI: results of a Delphi exercise. Osteoarthritis Cartilage. 2011;19(8):963–9.PubMedCentralCrossRefPubMed
34.
Buckland-Wright JC, et al. Quantitative microfocal radiographic assessment of osteoarthritis of the knee from weight bearing tunnel and semiflexed standing views. J Rheumatol. 1994;21(9):1734–41.PubMed
35.
Gilbertson EM. Development of periarticular osteophytes in experimentally induced osteoarthritis in the dog. A study using microradiographic, microangiographic, and fluorescent bone-labelling techniques. Ann Rheum Dis. 1975;34(1):12–25.PubMedCentralCrossRefPubMed
36.
Roemer FW, et al. Prevalence of magnetic resonance imaging-defined atrophic and hypertrophic phenotypes of knee osteoarthritis in a population-based cohort. Arthritis Rheum. 2012;64(2):429–37.PubMedCentralCrossRefPubMed
37.
Roemer FW, et al. Tibiofemoral joint osteoarthritis: risk factors for MR-depicted fast cartilage loss over a 30-month period in the multicenter osteoarthritis study. Radiology. 2009;252(3):772–80.PubMedCentralCrossRefPubMed
38.
Pottenger LA, Phillips FM, Draganich LF. The effect of marginal osteophytes on reduction of varus-valgus instability in osteoarthritic knees. Arthritis Rheum. 1990;33(6):853–8.CrossRefPubMed
39.
Castaneda S, et al. Osteoarthritis: a progressive disease with changing phenotypes. Rheumatology (Oxford). 2014;53(1):1–3.CrossRef
40.
Felson DT, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134(7):541–9.CrossRefPubMed
41.
Zhang Y, et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 2011;63(3):691–9.CrossRefPubMed
42.
Hunter DJ, et al. Responsiveness and reliability of MRI in knee osteoarthritis: a meta-analysis of published evidence. Osteoarthritis Cartilage. 2011;19(5):589–605.PubMedCentralCrossRefPubMed
43.
Hunter DJ, et al. Systematic review of the concurrent and predictive validity of MRI biomarkers in OA. Osteoarthritis Cartilage. 2011;19(5):557–88.PubMedCentralCrossRefPubMed
44.
Conaghan PG, et al. Summary and recommendations of the OARSI FDA osteoarthritis Assessment of Structural Change Working Group. Osteoarthritis Cartilage. 2011;19(5):606–10.PubMedCentralCrossRefPubMed
45.
Meredith DS, et al. Empirical evaluation of the inter-relationship of articular elements involved in the pathoanatomy of knee osteoarthritis using magnetic resonance imaging. BMC Musculoskelet Disord. 2009;10:133.PubMedCentralCrossRefPubMed
46.
Peterfy CG, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12(3):177–90.CrossRefPubMed
47.
Kornaat PR, et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)–inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol. 2005;34(2):95–102.CrossRefPubMed
48.
Hunter DJ, et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis. 2008;67(2):206–11.CrossRefPubMed
49.
Hunter DJ, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage. 2011;19(8):990–1002.PubMedCentralCrossRefPubMed
50.
Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br. 1961;43-B:752–7.PubMed
51.
Biswal S, et al. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum. 2002;46(11):2884–92.CrossRefPubMed
52.
Fernandez-Madrid F, et al. Synovial thickening detected by MR imaging in osteoarthritis of the knee confirmed by biopsy as synovitis. Magn Reson Imaging. 1995;13(2):177–83.CrossRefPubMed
53.
Saddik D, McNally EG, Richardson M. MRI of Hoffa’s fat pad. Skeletal Radiol. 2004;33(8):433–44.CrossRefPubMed
54.
Hayashi D, et al. Imaging of synovitis in osteoarthritis: current status and outlook. Semin Arthritis Rheum. 2011;41(2):116–30.CrossRefPubMed
55.
Rhodes LA, et al. The validation of simple scoring methods for evaluating compartment-specific synovitis detected by MRI in knee osteoarthritis. Rheumatology (Oxford). 2005;44(12):1569–73.CrossRef
56.
Baker K, et al. Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann Rheum Dis. 2010;69(10):1779–83.CrossRefPubMed
57.
Guermazi A, et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann Rheum Dis. 2011;70(5):805–11.PubMedCentralCrossRefPubMed
58.
Loeuille D, et al. Magnetic resonance imaging in osteoarthritis: which method best reflects synovial membrane inflammation? Correlations with clinical, macroscopic and microscopic features. Osteoarthritis Cartilage. 2009;17(9):1186–92.CrossRefPubMed
59.
Guermazi A, et al. Whole-knee synovitis semiquantitatively assessed on T1-weighted contrast-enhanced MRI is associated with radiographic tibiofemoral osteoarthritis and severe meniscal damage: the MOST Study [abstract 402]. Osteoarthritis Cartilage. 2009;17 Suppl 1:S211–2.CrossRef
60.
Bergin D, et al. Atraumatic medial collateral ligament oedema in medial compartment knee osteoarthritis. Skeletal Radiol. 2002;31(1):14–8.CrossRefPubMed
61.
Crema MD, et al. The association of magnetic resonance imaging (MRI)-detected structural pathology of the knee with crepitus in a population-based cohort with knee pain: the MoDEKO study. Osteoarthritis Cartilage. 2011;19(12):1429–32.CrossRefPubMed
62.
Stein V, et al. Pattern of joint damage in persons with knee osteoarthritis and concomitant ACL tears. Rheumatol Int. 2012;32(5):1197–208.PubMedCentralCrossRefPubMed
63.
Brem MH, et al. Longitudinal evaluation of the occurrence of MRI-detectable bone marrow edema in osteoarthritis of the knee. Acta Radiol. 2008;49(9):1031–7.CrossRefPubMed
64.
Berthiaume MJ, et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis. 2005;64(4):556–63.PubMedCentralCrossRefPubMed
65.
Englund M, et al. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study. Ann Rheum Dis. 2010;69(10):1796–802.PubMedCentralCrossRefPubMed
66.
Davies-Tuck ML, et al. Total cholesterol and triglycerides are associated with the development of new bone marrow lesions in asymptomatic middle-aged women - a prospective cohort study. Arthritis Res Ther. 2009;11(6):R181.PubMedCentralCrossRefPubMed
67.
Laberge MA, et al. Obesity increases the prevalence and severity of focal knee abnormalities diagnosed using 3T MRI in middle-aged subjects–data from the Osteoarthritis Initiative. Skeletal Radiol. 2012;41(6):633–41.PubMedCentralCrossRefPubMed
68.
Sharma L, et al. Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum. 2008;58(6):1716–26.CrossRefPubMed
69.
Ding C, et al. Association of prevalent and incident knee cartilage defects with loss of tibial and patellar cartilage: a longitudinal study. Arthritis Rheum. 2005;52(12):3918–27.CrossRefPubMed
70.
Stefanik JJ, et al. Association between patella alta and the prevalence and worsening of structural features of patellofemoral joint osteoarthritis: the multicenter osteoarthritis study. Arthritis Care Res (Hoboken). 2010;62(9):1258–65.CrossRef
71.
Roemer FW, et al. Hip Osteoarthritis MRI Scoring System (HOAMS): reliability and associations with radiographic and clinical findings. Osteoarthritis Cartilage. 2011;19(8):946–62.CrossRefPubMed
72.
Haugen IK, et al. Hand osteoarthritis and MRI: development and first validation step of the proposed Oslo Hand Osteoarthritis MRI score. Ann Rheum Dis. 2011;70(6):1033–8.CrossRefPubMed
73.
Haugen IK, et al. Associations between MRI-defined synovitis, bone marrow lesions and structural features and measures of pain and physical function in hand osteoarthritis. Ann Rheum Dis. 2012;71(6):899–904.CrossRefPubMed
74.
Pfirrmann CW, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26(17):1873–8.CrossRef
75.
Friedrich KM, et al. The prevalence of lumbar facet joint edema in patients with low back pain. Skeletal Radiol. 2007;36(8):755–60.CrossRefPubMed
76.
Pfirrmann CW, et al. MR image-based grading of lumbar nerve root compromise due to disk herniation: reliability study with surgical correlation. Radiology. 2004;230(2):583–8.CrossRefPubMed
77.
Griffith JF, et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2007;32(24):E708–12.CrossRef
78.
Thompson JP, et al. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976). 1990;15(5):411–5.CrossRef
79.
de Abreu MR, et al. Acromioclavicular joint osteoarthritis: comparison of findings derived from MR imaging and conventional radiography. Clin Imaging. 2005;29(4):273–7.CrossRefPubMed
80.
Schmal H, et al. Synovial cytokine expression in ankle osteoarthritis depends on age and stage. Knee Surg Sports Traumatol Arthrosc. 2015;23(5):1359–67. Epub 2013 Oct 19.
81.
Roemer FW, et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis. 2011;70(10):1804–9.PubMedCentralCrossRefPubMed
82.
Roos EM, Dahlberg L. Positive effect of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum. 2005;52:3507–14.CrossRefPubMed
83.
McAlindon TE, et al. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial. Osteoarthritis Cartilage. 2011;19(4):399–405.CrossRefPubMed
84.
Souza RB, et al. The effects of acute loading on T1rho and T2 relaxation times of tibiofemoral articular cartilage. Osteoarthritis Cartilage. 2010;18(12):1557–63.CrossRefPubMed
85.
Eckstein F, et al. Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthritis Cartilage. 2006;14(10):974–83.CrossRefPubMed
86.
Buck RJ, et al. An efficient subset of morphological measures for articular cartilage in the healthy and diseased human knee. Magn Reson Med. 2010;63(3):680–90.CrossRefPubMed
87.
Guermazi A, et al. Osteoarthritis: a review of strengths and weaknesses of different imaging options. Rheum Dis Clin North Am. 2013;39(3):567–91.CrossRefPubMed
88.
Eckstein F, et al. Quantitative MRI measures of cartilage predict knee replacement: a case-control study from the Osteoarthritis Initiative. Ann Rheum Dis. 2013;72(5):707–14.CrossRefPubMed
89.
Kalichman L, et al. Facet joint osteoarthritis and low back pain in the community-based population. Spine (Phila Pa 1976). 2008;33(23):2560–5.CrossRef
90.
Neogi T, Bowes MA, Niu J, et al. MRI-based three-dimensional bone shape of the knee predicts onset of knee osteoarthritis: data from the osteoarthritis initiative. Arthritis Rheum. 2013;65(8):2048–58.PubMedCentralCrossRefPubMed
91.
Gregory JS, et al. Early identification of radiographic osteoarthritis of the hip using an active shape model to quantify changes in bone morphometric features: can hip shape tell us anything about the progression of osteoarthritis? Arthritis Rheum. 2007;56(11):3634–43.CrossRefPubMed
92.
Lynch JA, et al. The association of proximal femoral shape and incident radiographic hip OA in elderly women. Osteoarthritis Cartilage. 2009;17(10):1313–8.PubMedCentralCrossRefPubMed
93.
Baker-LePain JC, Lane NE. Relationship between joint shape and the development of osteoarthritis. Curr Opin Rheumatol. 2010;22(5):538–43.CrossRefPubMed
94.
Etchebehere EC, et al. Orthopedic pathology of the lower extremities: scintigraphic evaluation in the thigh, knee, and leg. Semin Nucl Med. 1998;28(1):41–61.CrossRefPubMed
95.
Omoumi P, et al. CT arthrography, MR arthrography, PET, and scintigraphy in osteoarthritis. Radiol Clin North Am. 2009;47(4):595–615.CrossRefPubMed
96.
Temmerman OP, et al. In vivo measurements of blood flow and bone metabolism in osteoarthritis. Rheumatol Int. 2013;33(4):959–63.CrossRefPubMed
97.
Moon YL, Lee SH, Park SY, et al. Evolution of shoulder disorders by 2-[F-18]-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography. Clin Orthop Surg. 2010;2:167–72.PubMedCentralCrossRefPubMed
98.
Magee D, et al. Combining variational and model-based techniques to register PET and MR images in hand osteoarthritis. Phys Med Biol. 2010;55(16):4755–69.CrossRefPubMed
99.
Keen HI, Conaghan PG. Ultrasonography in osteoarthritis. Radiol Clin North Am. 2009;47(4):581–94.CrossRefPubMed
100.
Chiang EH, et al. Ultrasonic characterization of in vitro osteoarthritic articular cartilage with validation by confocal microscopy. Ultrasound Med Biol. 1997;23(2):205–13.CrossRefPubMed
101.
Keen HI, et al. The development of a preliminary ultrasonographic scoring system for features of hand osteoarthritis. Ann Rheum Dis. 2008;67(5):651–5.CrossRefPubMed
102.
Kortekaas MC, et al. Osteophytes and joint space narrowing are independently associated with pain in finger joints in hand osteoarthritis. Ann Rheum Dis. 2011;70(10):1835–7.CrossRefPubMed
103.
Conaghan PG, et al. Clinical and ultrasonographic predictors of joint replacement for knee osteoarthritis: results from a large, 3-year, prospective EULAR study. Ann Rheum Dis. 2010;69(4):644–7.CrossRefPubMed