Skip to main content
Top

19-08-2016 | Osteoarthritis | Review | Article

Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis

Journal: Nature Reviews Rheumatology

Authors: William H. Robinson, Christin M. Lepus, Qian Wang, Harini Raghu, Rong Mao, Tamsin M. Lindstrom, Jeremy Sokolove

Authors: William H. Robinson, Christin M. Lepus, Qian Wang, Harini Raghu, Rong Mao, Tamsin M. Lindstrom, Jeremy Sokolove

Publisher: Nature Publishing Group UK

Abstract

Osteoarthritis (OA) has long been viewed as a degenerative disease of cartilage, but accumulating evidence indicates that inflammation has a critical role in its pathogenesis. Furthermore, we now appreciate that OA pathogenesis involves not only breakdown of cartilage, but also remodelling of the underlying bone, formation of ectopic bone, hypertrophy of the joint capsule, and inflammation of the synovial lining. That is, OA is a disorder of the joint as a whole, with inflammation driving many pathologic changes. The inflammation in OA is distinct from that in rheumatoid arthritis and other autoimmune diseases: it is chronic, comparatively low-grade, and mediated primarily by the innate immune system. Current treatments for OA only control the symptoms, and none has been FDA-approved for the prevention or slowing of disease progression. However, increasing insight into the inflammatory underpinnings of OA holds promise for the development of new, disease-modifying therapies. Indeed, several anti-inflammatory therapies have shown promise in animal models of OA. Further work is needed to identify effective inhibitors of the low-grade inflammation in OA, and to determine whether therapies that target this inflammation can prevent or slow the development and progression of the disease.

Nat Rev Rheumatol 2016;12:580–592. doi:10.1038/nrrheum.2016.136

DOI: 10.1038/nrrheum.2016.136

Literature
  1. Lawrence, R. C. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58, 26–35 (2008).View ArticlePubMedPubMed Central
  2. Felson, D. T. Clinical practice. Osteoarthritis of the knee. N. Engl. J. Med. 354, 841–848 (2006).View ArticlePubMed
  3. Felson, D. T. et al. Osteoarthritis: new insights. Part 2: treatment approaches. Ann. Intern. Med. 133, 726–737 (2000).View ArticlePubMed
  4. Blagojevic, M., Jinks, C., Jeffery, A. & Jordan, K. P. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 18, 24–33 (2010).View ArticlePubMed
  5. Zhuo, Q., Yang, W., Chen, J. & Wang, Y. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol. 8, 729–737 (2012).View ArticlePubMed
  6. Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).View ArticlePubMedPubMed Central
  7. Sellam, J. & Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 6, 625–635 (2010).View ArticlePubMed
  8. Karsdal, M. A. et al. The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann. Rheum. Dis. 73, 336–348 (2014).View ArticlePubMed
  9. Goldring, M. B. & Goldring, S. R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. NY Acad. Sci. 1192, 230–237 (2010).View ArticlePubMed
  10. Liu-Bryan, R. & Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 11, 35–44 (2015).View ArticlePubMed
  11. Brandt, K. D., Dieppe, P. & Radin, E. L. Commentary: is it useful to subset “primary” osteoarthritis? A critique based on evidence regarding the etiopathogenesis of osteoarthritis. Semin. Arthritis Rheum. 39, 81–95 (2009).View ArticlePubMed
  12. Guermazi, A. et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann. Rheum. Dis. 70, 805–811 (2011).View ArticlePubMed
  13. Ishijima, M. et al. Relationships between biomarkers of cartilage, bone, synovial metabolism and knee pain provide insights into the origins of pain in early knee osteoarthritis. Arthritis Res. Ther. 13, R22 (2011).View ArticlePubMedPubMed Central
  14. Pessler, F. et al. The synovitis of “non-inflammatory” orthopaedic arthropathies: a quantitative histological and immunohistochemical analysis. Ann. Rheum. Dis. 67, 1184–1187 (2008).View ArticlePubMed
  15. Scanzello, C. R. & Goldring, S. R. The role of synovitis in osteoarthritis pathogenesis. Bone 51, 249–257 (2012).View ArticlePubMedPubMed Central
  16. Goldring, M. B. & Goldring, S. R. Osteoarthritis. J. Cell. Physiol. 213, 626–634 (2007).View ArticlePubMed
  17. Bondeson, J. et al. The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis Rheum. 62, 647–657 (2010).View ArticlePubMed
  18. Nettelbladt, E. & Sundblad, L. Protein patterns in synovial fluid and serum in rheumatoid arthritis and osteoarthritis. Arthritis Rheum. 2, 144–151 (1959).View ArticlePubMed
  19. Sohn, D. H. et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res. Ther. 14, R7 (2012).View ArticlePubMedPubMed Central
  20. Gobezie, R. et al. High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res. Ther. 9, R36 (2007).View ArticlePubMedPubMed Central
  21. Pelletier, J. P., Martel-Pelletier, J. & Abramson, S. B. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 44, 1237–1247 (2001).View ArticlePubMed
  22. Roemer, F. W. et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann. Rheum. Dis. 70, 1804–1809 (2011).View ArticlePubMed
  23. Hill, C. L. et al. Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann. Rheum. Dis. 66, 1599–1603 (2007).View ArticlePubMedPubMed Central
  24. Torres, L. et al. The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthritis Cartilage 14, 1033–1040 (2006).View ArticlePubMed
  25. Baker, K. et al. Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann. Rheum. Dis. 69, 1779–1783 (2010).View ArticlePubMed
  26. Scanzello, C. R. et al. Synovial inflammation in patients undergoing arthroscopic meniscectomy: molecular characterization and relationship to symptoms. Arthritis Rheum. 63, 391–400 (2011).View ArticlePubMedPubMed Central
  27. Krasnokutsky, S. et al. Quantitative magnetic resonance imaging evidence of synovial proliferation is associated with radiographic severity of knee osteoarthritis. Arthritis Rheum. 63, 2983–2991 (2011).View ArticlePubMedPubMed Central
  28. Sowers, M., Karvonen-Gutierrez, C. A., Jacobson, J. A., Jiang, Y. & Yosef, M. Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning. J. Bone Joint Surg. Am. 93, 241–251 (2011).View ArticlePubMedPubMed Central
  29. Ayral, X., Pickering, E. H., Woodworth, T. G., Mackillop, N. & Dougados, M. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis — results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage 13, 361–367 (2005).View ArticlePubMed
  30. Sokolove, J. & Lepus, C. M. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther. Adv. Musculoskeletal Dis. 5, 77–94 (2013).View Article
  31. Benito, M. J., Veale, D. J., FitzGerald, O., van den Berg, W. B. & Bresnihan, B. Synovial tissue inflammation in early and late osteoarthritis. Ann. Rheum. Dis. 64, 1263–1267 (2005).View ArticlePubMedPubMed Central
  32. Chevalier, X., Eymard, F. & Richette, P. Biologic agents in osteoarthritis: hopes and disappointments. Nat. Rev. Rheumatol. 9, 400–410 (2013).View ArticlePubMed
  33. Husa, M., Liu-Bryan, R. & Terkeltaub, R. Shifting HIFs in osteoarthritis. Nat. Med. 16, 641–644 (2010).View ArticlePubMedPubMed Central
  34. Glasson, S. S. In vivo osteoarthritis target validation utilizing genetically-modified mice. Curr. Drug Targets 8, 367–376 (2007).View ArticlePubMed
  35. van Lent, P. L. et al. Crucial role of synovial lining macrophages in the promotion of transforming growth factor β-mediated osteophyte formation. Arthritis Rheum. 50, 103–111 (2004).View ArticlePubMed
  36. Felson, D. T., Anderson, J. J., Naimark, A., Walker, A. M. & Meenan, R. F. Obesity and knee osteoarthritis. The Framingham Study. Ann. Intern. Med. 109, 18–24 (1988).View ArticlePubMed
  37. Berenbaum, F., Eymard, F. & Houard, X. Osteoarthritis, inflammation and obesity. Curr. Opin. Rheumatol. 25, 114–118 (2013).View ArticlePubMed
  38. You, T. & Nicklas, B. J. Chronic inflammation: role of adipose tissue and modulation by weight loss. Curr. Diabetes Rev. 2, 29–37 (2006).View ArticlePubMed
  39. Beavers, K. M. et al. Effects of total and regional fat loss on plasma CRP and IL-6 in overweight and obese, older adults with knee osteoarthritis. Osteoarthritis Cartilage 23, 249–256 (2015).View ArticlePubMed
  40. Vincent, H. K., Heywood, K., Connelly, J. & Hurley, R. W. Obesity and weight loss in the treatment and prevention of osteoarthritis. PM R. 4 (5 Suppl.), S59–S67 (2012).View ArticlePubMedPubMed Central
  41. Haseeb, A. & Haqqi, T. M. Immunopathogenesis of osteoarthritis. Clin. Immunol. 146, 185–196 (2013).View ArticlePubMedPubMed Central
  42. Scanzello, C. R., Plaas, A. & Crow, M. K. Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound? Current opinion in rheumatology 20, 565–572 (2008).View ArticlePubMed
  43. Krenn, V. et al. Grading of chronic synovitis — a histopathological grading system for molecular and diagnostic pathology. Pathol. Res. Pract. 198, 317–325 (2002).View ArticlePubMed
  44. Slansky, E. et al. Quantitative determination of the diagnostic accuracy of the synovitis score and its components. Histopathology 57, 436–443 (2010).View ArticlePubMed
  45. de Lange-Brokaar, B. J. et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthritis Cartilage 20, 1484–1499 (2012).View ArticlePubMed
  46. Cohen, S. B. et al. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee. Arthritis Res. Ther. 13, R125 (2011).View ArticlePubMedPubMed Central
  47. Magnano, M. D. et al. A pilot study of tumor necrosis factor inhibition in erosive/inflammatory osteoarthritis of the hands. J. Rheumatol. 34, 1323–1327 (2007).PubMed
  48. Verbruggen, G., Wittoek, R., Vander Cruyssen, B. & Elewaut, D. Tumour necrosis factor blockade for the treatment of erosive osteoarthritis of the interphalangeal finger joints: a double blind, randomised trial on structure modification. Ann. Rheum. Dis. 71, 891–898 (2012).View ArticlePubMed
  49. Chevalier, X. et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 61, 344–352 (2009).View ArticlePubMed
  50. Orlowsky, E. W. & Kraus, V. B. The role of innate immunity in osteoarthritis: when our first line of defense goes on the offensive. J. Rheumatol. 42, 363–371 (2015).View ArticlePubMedPubMed Central
  51. Fearon, D. T. & Locksley, R. M. The instructive role of innate immunity in the acquired immune response. Science 272, 50–53 (1996).View ArticlePubMed
  52. Holers, V. M. & Thurman, J. M. The alternative pathway of complement in disease: opportunities for therapeutic targeting. Mol. Immunol. 41, 147–152 (2004).View ArticlePubMed
  53. Wang, Q. et al. Identification of a central role for complement in osteoarthritis. Nat. Med. 17, 1674–1679 (2011).View ArticlePubMedPubMed Central
  54. Rus, H., Cudrici, C. & Niculescu, F. The role of the complement system in innate immunity. Immunol. Res. 33, 103–112 (2005).View ArticlePubMed
  55. Song, W. C., Sarrias, M. R. & Lambris, J. D. Complement and innate immunity. Immunopharmacology 49, 187–198 (2000).View ArticlePubMed
  56. Happonen, K. E. et al. Regulation of complement by COMP allows for a novel molecular diagnostic principle in rheumatoid arthritis. Arthritis Rheum. 62, 3574–3783 (2010).View ArticlePubMedPubMed Central
  57. Sjoberg, A. P. et al. Short leucine-rich glycoproteins of the extracellular matrix display diverse patterns of complement interaction and activation. Mol. Immunol. 46, 830–839 (2009).View ArticlePubMed
  58. Sjoberg, A., Onnerfjord, P., Morgelin, M., Heinegard, D. & Blom, A. M. The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J. Biol. Chem. 280, 32301–32308 (2005).View ArticlePubMed
  59. Moreth, K., Iozzo, R. V. & Schaefer, L. Small leucine-rich proteoglycans orchestrate receptor crosstalk during inflammation. Cell Cycle 11, 2084–2091 (2012).View ArticlePubMedPubMed Central
  60. Rosenthal, A. K. Crystals, inflammation, and osteoarthritis. Curr. Opin. Rheumatol. 23, 170–173 (2011).View ArticlePubMedPubMed Central
  61. Sofat, N. Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int. J. Exp. Pathol. 90, 463–479 (2009).View ArticlePubMedPubMed Central
  62. Nasi, S. et al. Dispensable role of myeloid differentiation primary response gene 88 (MyD88) and MyD88-dependent Toll-like receptors (TLRs) in a murine model of osteoarthritis. Joint Bone Spine 81, 320–324 (2014).View ArticlePubMed
  63. Liu-Bryan, R. Synovium and the innate inflammatory network in osteoarthritis progression. Curr. Rheumatol. Rep. 15, 323 (2013).View ArticlePubMedPubMed Central
  64. Rosado, C. J. et al. A common fold mediates vertebrate defense and bacterial attack. Science 317, 1548–1551 (2007).View ArticlePubMed
  65. Tschopp, J., Masson, D. & Stanley, K. K. Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. Nature 322, 831–834 (1986).View ArticlePubMed
  66. Bohana-Kashtan, O., Ziporen, L., Donin, N., Kraus, S. & Fishelson, Z. Cell signals transduced by complement. Mol. Immunol. 41, 583–597 (2004).View ArticlePubMed
  67. Cooke, T. D., Bennett, E. L. & Ohno, O. The deposition of immunoglobulins and complement in osteoarthritic cartilage. Int. Orthop. 4, 211–217 (1980).View ArticlePubMed
  68. Corvetta, A. et al. Terminal complement complex in synovial tissue from patients affected by rheumatoid arthritis, osteoarthritis and acute joint trauma. Clin. Exp. Rheumatol. 10, 433–438 (1992).PubMed
  69. Bradley, K. et al. Synthesis of classical pathway complement components by chondrocytes. Immunology 88, 648–656 (1996).PubMedPubMed Central
  70. Kemper, C. & Atkinson, J. P. T-Cell regulation: with complements from innate immunity. Nat. Rev. Immunol. 7, 9–18 (2007).View ArticlePubMed
  71. Lepus, C. M. et al. Brief report: carboxypeptidase B serves as a protective mediator in osteoarthritis. Arthritis Rheumatol. 66, 101–106 (2014).View ArticlePubMedPubMed Central
  72. Boffa, M. C., Burke, B. & Haudenschild, C. C. Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J. Histochem. Cytochem. 35, 1267–1276 (1987).View ArticlePubMed
  73. McCachren, S. S., Diggs, J., Weinberg, J. B. & Dittman, W. A. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood 78, 3128–3132 (1991).PubMed
  74. Conway, E. M., Nowakowski, B. & Steiner-Mosonyi, M. Human neutrophils synthesize thrombomodulin that does not promote thrombin-dependent protein C activation. Blood 80, 1254–1263 (1992).PubMed
  75. Leung, L. L., Myles, T., Nishimura, T., Song, J. J. & Robinson, W. H. Regulation of tissue inflammation by thrombin-activatable carboxypeptidase B (or TAFI). Mol. Immunol. 45, 4080–4083 (2008).View ArticlePubMedPubMed Central
  76. Sharif, S. A. et al. Thrombin-activatable carboxypeptidase B cleavage of osteopontin regulates neutrophil survival and synoviocyte binding in rheumatoid arthritis. Arthritis Rheum. 60, 2902–2912 (2009).View ArticlePubMedPubMed Central
  77. Benoit, M. E., Clarke, E. V., Morgado, P., Fraser, D. A. & Tenner, A. J. Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells. J. Immunol. 188, 5682–5693 (2012).View ArticlePubMed
  78. Foell, D., Wittkowski, H. & Roth, J. Mechanisms of disease: a 'DAMP' view of inflammatory arthritis. Nat. Clin. Pract. Rheumatol. 3, 382–390 (2007).View ArticlePubMed
  79. Blom, A. B. et al. Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheum. 56, 147–157 (2007).View ArticlePubMed
  80. Bondeson, J. Activated synovial macrophages as targets for osteoarthritis drug therapy. Curr. Drug Targets 11, 576–585 (2010).View ArticlePubMed
  81. Irani, A. A., Schechter, N. M., Craig, S. S., DeBlois, G. & Schwartz, L. B. Two types of human mast cells that have distinct neutral protease compositions. Proc. Natl Acad. Sci. USA 83, 4464–4468 (1986).View ArticlePubMedPubMed Central
  82. Buckley, M. G., Gallagher, P. J. & Walls, A. F. Mast cell subpopulations in the synovial tissue of patients with osteoarthritis: selective increase in numbers of tryptase-positive, chymase-negative mast cells. J. Pathol. 186, 67–74 (1998).View ArticlePubMed
  83. Gotis-Graham, I. & McNeil, H. P. Mast cell responses in rheumatoid synovium. Association of the MCTC subset with matrix turnover and clinical progression. Arthritis Rheum. 40, 479–489 (1997).View ArticlePubMed
  84. Nakano, S. et al. Distinct expression of mast cell tryptase and protease activated receptor-2 in synovia of rheumatoid arthritis and osteoarthritis. Clin. Rheumatol. 26, 1284–1292 (2007).View ArticlePubMed
  85. Bridges, A. J. et al. Human synovial mast cell involvement in rheumatoid arthritis and osteoarthritis. Relationship to disease type, clinical activity, and antirheumatic therapy. Arthritis Rheum. 34, 1116–1124 (1991).View ArticlePubMed
  86. Gruber, B. et al. Characterization and functional studies of rheumatoid synovial mast cells. Activation by secretagogues, anti-IgE, and a histamine-releasing lymphokine. Arthritis Rheum. 29, 944–955 (1986).View ArticlePubMed
  87. Kopicky-Burd, J. A. et al. Characterization of human synovial mast cells. J. Rheumatol. 15, 1326–1333 (1988).PubMed
  88. Cooke, T. D. Significance of immune complex deposits in osteoarthritic cartilage. J. Rheumatol. 14, 77–79 (1987).PubMed
  89. Vargas, M. E., Watanabe, J., Singh, S. J., Robinson, W. H. & Barres, B. A. Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc. Natl Acad. Sci. USA 107, 11993–11998 (2010).View ArticlePubMedPubMed Central
  90. Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P. & Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011).View ArticlePubMed
  91. Goldring, M. B., Fukuo, K., Birkhead, J. R., Dudek, E. & Sandell, L. J. Transcriptional suppression by interleukin-1 and interferon-γ of type II collagen gene expression in human chondrocytes. J. Cell Biochem. 54, 85–99 (1994).View ArticlePubMed
  92. Saklatvala, J. Tumour necrosis factor α stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature 322, 547–549 (1986).View ArticlePubMedPubMed Central
  93. Attur, M. G., Patel, I. R., Patel, R. N., Abramson, S. B. & Amin, A. R. Autocrine production of IL-1β by human osteoarthritis-affected cartilage and differential regulation of endogenous nitric oxide, IL-6, prostaglandin E2, and IL-8. Proc. Assoc. Am. Physicians 110, 65–72 (1998).PubMed
  94. Krzeski, P. et al. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res. Ther. 9, R109 (2007).View ArticlePubMedPubMed Central
  95. Catterall, J. B. & Cawston, T. E. Drugs in development: bisphosphonates and metalloproteinase inhibitors. Arthritis Res. Ther. 5, 12–24 (2003).View ArticlePubMed
  96. Clutterbuck, A. L., Asplin, K. E., Harris, P., Allaway, D. & Mobasheri, A. Targeting matrix metalloproteinases in inflammatory conditions. Curr. Drug Targets 10, 1245–1254 (2009).View ArticlePubMed
  97. Endres, M. et al. Chemokine profile of synovial fluid from normal, osteoarthritis and rheumatoid arthritis patients: CCL25, CXCL10 and XCL1 recruit human subchondral mesenchymal progenitor cells. Osteoarthritis Cartilage 18, 1458–1466 (2010).View ArticlePubMed
  98. Haringman, J. J., Smeets, T. J., Reinders-Blankert, P. & Tak, P. P. Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann. Rheum. Dis. 65, 294–300 (2006).View ArticlePubMed
  99. Borzi, R. M. et al. Human chondrocytes express functional chemokine receptors and release matrix-degrading enzymes in response to C-X-C and C-C chemokines. Arthritis Rheum. 43, 1734–1741 (2000).View ArticlePubMed
  100. Miller, R. J., Banisadr, G. & Bhattacharyya, B. J. CXCR4 signaling in the regulation of stem cell migration and development. J. Neuroimmunol. 198, 31–38 (2008).View ArticlePubMedPubMed Central
  101. Haringman, J. J., Ludikhuize, J. & Tak, P. P. Chemokines in joint disease: the key to inflammation? Ann. Rheum. Dis. 63, 1186–1194 (2004).View ArticlePubMedPubMed Central
  102. Shen, J., Li, S. & Chen, D. TGF-β signaling and the development of osteoarthritis. Bone Res. 2, 14002 (2014).View ArticlePubMedPubMed Central
  103. Blaney Davidson, E. N., van der Kraan, P. M. & van den Berg, W. B. TGF-β and osteoarthritis. Osteoarthritis Cartilage 15, 597–604 (2007).View ArticlePubMed
  104. Ellman, M. B. et al. Fibroblast growth factor control of cartilage homeostasis. J. Cell Biochem. 114, 735–742 (2013).View ArticlePubMedPubMed Central
  105. Haywood, L. et al. Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum. 48, 2173–2177 (2003).View ArticlePubMed
  106. Prencipe, G. et al. Nerve growth factor downregulates inflammatory response in human monocytes through TrkA. J. Immunol. 192, 3345–3354 (2014).View ArticlePubMed
  107. Lane, N. E. et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N. Engl. J. Med. 363, 1521–1531 (2010).View ArticlePubMedPubMed Central
  108. Thysen, S., Luyten, F. P. & Lories, R. J. Targets, models and challenges in osteoarthritis research. Dis. Model. Mech. 8, 17–30 (2015).View ArticlePubMedPubMed Central
  109. Henrotin, Y., Pesesse, L. & Lambert, C. Targeting the synovial angiogenesis as a novel treatment approach to osteoarthritis. Ther. Adv. Musculoskeletal Dis. 6, 20–34 (2014).View Article
  110. de Boer, T. N. et al. Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthritis Cartilage 20, 846–853 (2012).View ArticlePubMed
  111. Kluzek, S., Newton, J. L. & Arden, N. K. Is osteoarthritis a metabolic disorder? Br. Med. Bull. 115, 111–121 (2015).View ArticlePubMed
  112. Malemud, C. J. Biologic basis of osteoarthritis: state of the evidence. Curr. Opin. Rheumatol. 27, 289–294 (2015).View ArticlePubMedPubMed Central
  113. Yusuf, E. et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann. Rheum. Dis. 69, 761–765 (2010).View ArticlePubMed
  114. Le Clanche, S., Bonnefont-Rousselot, D., Sari-Ali, E., Rannou, F. & Borderie, D. Inter-relations between osteoarthritis and metabolic syndrome: a common link? Biochimie 121, 238–252 (2016).View ArticlePubMed
  115. Conde, J. et al. Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis 2011, 203901 (2011).View ArticlePubMedPubMed Central
  116. Gomez, R. et al. What's new in our understanding of the role of adipokines in rheumatic diseases? Nat. Rev. Rheumatol. 7, 528–536 (2011).View ArticlePubMed
  117. Dumond, H. et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 48, 3118–3129 (2003).View ArticlePubMed
  118. Filkova, M. et al. Increased serum adiponectin levels in female patients with erosive compared with non-erosive osteoarthritis. Ann. Rheum. Dis. 68, 295–296 (2009).View ArticlePubMed
  119. Francin, P. J. et al. Association between adiponectin and cartilage degradation in human osteoarthritis. Osteoarthritis Cartilage 22, 519–526 (2014).View ArticlePubMed
  120. Liao, L., Chen, Y. & Wang, W. The current progress in understanding the molecular functions and mechanisms of visfatin in osteoarthritis. J. Bone Miner. Metab. http://​dx.​doi.​org/​10.​1007/​s00774-016-0743-1 (2016).
  121. Koskinen, A., Vuolteenaho, K., Moilanen, T. & Moilanen, E. Resistin as a factor in osteoarthritis: synovial fluid resistin concentrations correlate positively with interleukin 6 and matrix metalloproteinases MMP-1 and MMP-3. Scand. J. Rheumatol. 43, 249–253 (2014).View ArticlePubMed
  122. Goldring, M. B. & Otero, M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 23, 471–478 (2011).View ArticlePubMedPubMed Central
  123. Jiang, L., Bao, J., Zhou, X., Xiong, Y. & Wu, L. Increased serum levels and chondrocyte expression of nesfatin-1 in patients with osteoarthritis and its relation with BMI, hsCRP, and IL-18. Mediators Inflamm. 2013, 631251 (2013).PubMedPubMed Central
  124. Yang, S. et al. NAMPT (visfatin), a direct target of hypoxia-inducible factor-2α, is an essential catabolic regulator of osteoarthritis. Ann. Rheum. Dis. 74, 595–602 (2015).View ArticlePubMed
  125. Gegout, P. P., Francin, P. J., Mainard, D. & Presle, N. Adipokines in osteoarthritis: friends or foes of cartilage homeostasis? Joint Bone Spine 75, 669–671 (2008).View ArticlePubMed
  126. Presle, N. et al. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production. Osteoarthritis Cartilage 14, 690–695 (2006).View ArticlePubMed
  127. Martel-Pelletier, J., Pelletier, J. P. & Fahmi, H. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin. Arthritis Rheum. 33, 155–167 (2003).View ArticlePubMed
  128. Wittenberg, R. H., Willburger, R. E., Kleemeyer, K. S. & Peskar, B. A. In vitro release of prostaglandins and leukotrienes from synovial tissue, cartilage, and bone in degenerative joint diseases. Arthritis Rheum. 36, 1444–1450 (1993).View ArticlePubMed
  129. Casale, T. B., Abbas, M. K. & Carolan, E. J. Degree of neutrophil chemotaxis is dependent upon the chemoattractant and barrier. Am. J. Respir. Cell. Mol. Biol. 7, 112–117 (1992).View ArticlePubMed
  130. He, W., Pelletier, J. P., Martel-Pelletier, J., Laufer, S. & Di Battista, J. A. Synthesis of interleukin 1β, tumor necrosis factor-α, and interstitial collagenase (MMP-1) is eicosanoid dependent in human osteoarthritis synovial membrane explants: interactions with antiinflammatory cytokines. J. Rheumatol. 29, 546–553 (2002).PubMed
  131. Peters-Golden, M. & Henderson, W. R. Jr. Leukotrienes. N. Engl. J. Med. 357, 1841–1854 (2007).View ArticlePubMed
  132. Geng, Y., Blanco, F. J., Cornelisson, M. & Lotz, M. Regulation of cyclooxygenase-2 expression in normal human articular chondrocytes. J. Immunol. 155, 796–801 (1995).PubMed
  133. Li, X. et al. Expression and regulation of microsomal prostaglandin E synthase-1 in human osteoarthritic cartilage and chondrocytes. J. Rheumatol. 32, 887–895 (2005).PubMed
  134. Masuko-Hongo, K. et al. Up-regulation of microsomal prostaglandin E synthase 1 in osteoarthritic human cartilage: critical roles of the ERK-1/2 and p38 signaling pathways. Arthritis Rheum. 50, 2829–2838 (2004).View ArticlePubMed
  135. Kojima, F. et al. Membrane-associated prostaglandin E synthase-1 is upregulated by proinflammatory cytokines in chondrocytes from patients with osteoarthritis. Arthritis Res. Ther. 6, R355–R365 (2004).View ArticlePubMedPubMed Central
  136. Paredes, Y. et al. Study of the role of leukotriene B4 in abnormal function of human subchondral osteoarthritis osteoblasts: effects of cyclooxygenase and/or 5-lipoxygenase inhibition. Arthritis Rheum. 46, 1804–1812 (2002).View ArticlePubMed
  137. Scarpignato, C. et al. Safe prescribing of non-steroidal anti-inflammatory drugs in patients with osteoarthritis — an expert consensus addressing benefits as well as gastrointestinal and cardiovascular risks. BMC Med. 13, 55 (2015).View ArticlePubMedPubMed Central
  138. Steinhilber, D. & Hofmann, B. Recent advances in the search for novel 5-lipoxygenase inhibitors. Bas. Clin. Pharmacol. Toxicol. 114, 70–77 (2014).View Article
  139. Tonge, D. P., Pearson, M. J. & Jones, S. W. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthritis Cartilage 22, 609–621 (2014).View ArticlePubMed
  140. Abramson, S. B. Osteoarthritis and nitric oxide. Osteoarthritis Cartilage 16 (Suppl. 2), S15–S20 (2008).View ArticlePubMed
  141. Palmer, R. M., Hickery, M. S., Charles, I. G., Moncada, S. & Bayliss, M. T. Induction of nitric oxide synthase in human chondrocytes. Biochem. Biophys. Res. Commun. 193, 398–405 (1993).View ArticlePubMed
  142. McInnes, I. B. et al. Production of nitric oxide in the synovial membrane of rheumatoid and osteoarthritis patients. J. Exp. Med. 184, 1519–1524 (1996).View ArticlePubMed
  143. Farrell, A. J., Blake, D. R., Palmer, R. M. & Moncada, S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann. Rheum. Dis. 51, 1219–1222 (1992).View ArticlePubMedPubMed Central
  144. Hashimoto, S., Takahashi, K., Amiel, D., Coutts, R. D. & Lotz, M. Chondrocyte apoptosis and nitric oxide production during experimentally induced osteoarthritis. Arthritis Rheum. 41, 1266–1274, http://​dx.​doi.​org/​10.​1002/​1529-0131(199807)41:7<1266::AID-ART18>3.0.CO;2-Y (1998).View ArticlePubMed
  145. Notoya, K. et al. The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2. J. Immunol. 165, 3402–3410 (2000).View ArticlePubMed
  146. Scher, J. U., Pillinger, M. H. & Abramson, S. B. Nitric oxide synthases and osteoarthritis. Curr. Rheumatol. Rep. 9, 9–15 (2007).View ArticlePubMed
  147. Hellio le Graverand, M. P. et al. A 2-year randomised, double-blind, placebo-controlled, multicentre study of oral selective iNOS inhibitor, cindunistat (SD-6010), in patients with symptomatic osteoarthritis of the knee. Ann. Rheum. Dis. 72, 187–195 (2013).View ArticlePubMed
  148. Sutton, S. et al. The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet. J. 179, 10–24 (2009).View ArticlePubMed
  149. Meini, S. & Maggi, C. A. Knee osteoarthritis: a role for bradykinin? Inflamm. Res. 57, 351–361 (2008).View ArticlePubMed
  150. Song, I. H. et al. Contrast-enhanced ultrasound in monitoring the efficacy of a bradykinin receptor 2 antagonist in painful knee osteoarthritis compared with MRI. Ann. Rheum. Dis. 68, 75–83 (2009).View ArticlePubMed
  151. Dudek, M. et al. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity. J. Clin. Invest. 126, 365–376 (2016).View ArticlePubMed
  152. Kc, R. et al. Environmental disruption of circadian rhythm predisposes mice to osteoarthritis-like changes in knee joint. J. Cell. Physiol. 230, 2174–2183 (2015).View ArticlePubMedPubMed Central
  153. Gossan, N. et al. The circadian clock in murine chondrocytes regulates genes controlling key aspects of cartilage homeostasis. Arthritis Rheum. 65, 2334–2345 (2013).View ArticlePubMedPubMed Central
  154. Guo, B. et al. Catabolic cytokines disrupt the circadian clock and the expression of clock-controlled genes in cartilage via an NFκB-dependent pathway. Osteoarthritis Cartilage 23, 1981–1988 (2015).View ArticlePubMedPubMed Central
  155. Honda, K. K. et al. Different circadian expression of major matrix-related genes in various types of cartilage: modulation by light-dark conditions. J. Biochem. 154, 373–381 (2013).View ArticlePubMed
  156. Takarada, T. et al. Clock genes influence gene expression in growth plate and endochondral ossification in mice. J. Biol. Chem. 287, 36081–36095 (2012).View ArticlePubMedPubMed Central
  157. Gibbs, J. et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat. Med. 20, 919–926 (2014).View ArticlePubMedPubMed Central
  158. Nguyen, K. D. et al. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 341, 1483–1488 (2013).View ArticlePubMed
  159. Gibbs, J. E. et al. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc. Natl Acad. Sci. USA 109, 582–587 (2012).View ArticlePubMed
  160. Mobasheri, A. The future of osteoarthritis therapeutics: targeted pharmacological therapy. Curr. Rheumatol. Rep. 15, 364 (2013).View ArticlePubMedPubMed Central
  161. Mobasheri, A. The future of osteoarthritis therapeutics: emerging biological therapy. Curr. Rheumatol. Rep. 15, 385 (2013).View ArticlePubMedPubMed Central
  162. Hunter, D. J. Are there promising biologic therapies for osteoarthritis? Curr. Rheumatol. Rep. 10, 19–25 (2008).View ArticlePubMed
  163. Pelletier, J. P. et al. Disease-modifying effect of strontium ranelate in a subset of patients from the Phase III knee osteoarthritis study SEKOIA using quantitative MRI: reduction in bone marrow lesions protects against cartilage loss. Ann. Rheum. Dis. 74, 422–429 (2015).View ArticlePubMed
  164. Reginster, J. Y. et al. Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind, randomised placebo-controlled trial. Ann. Rheum. Dis. 72, 179–186 (2013).View ArticlePubMed
  165. Pelletier, J. P. et al. Strontium ranelate reduces the progression of experimental dog osteoarthritis by inhibiting the expression of key proteases in cartilage and of IL-1β in the synovium. Ann. Rheum. Dis. 72, 250–257 (2013).View ArticlePubMed
  166. Tat, S. K., Pelletier, J. P., Mineau, F., Caron, J. & Martel-Pelletier, J. Strontium ranelate inhibits key factors affecting bone remodeling in human osteoarthritic subchondral bone osteoblasts. Bone 49, 559–567 (2011).View ArticlePubMed
  167. Lafeber, F. P. & van Laar, J. M. Strontium ranelate: ready for clinical use as disease-modifying osteoarthritis drug? Ann. Rheum. Dis. 72, 157–161 (2013).View ArticlePubMed
  168. Felson, D. T. Developments in the clinical understanding of osteoarthritis. Arthritis Res. Ther. 11, 203 (2009).View ArticlePubMedPubMed Central
  169. Midwood, K. et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat. Med. 15, 774–780 (2009).View ArticlePubMed
  170. van Lent, P. L. et al. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum. 64, 1466–1476 (2012).View ArticlePubMed
  171. Schelbergen, R. F. et al. Alarmins S100A8/S100A9 aggravate osteophyte formation in experimental osteoarthritis and predict osteophyte progression in early human symptomatic osteoarthritis. Ann. Rheum. Dis. 75, 218–225 (2016).View ArticlePubMed
  172. Joosten, L. A., Helsen, M. M., van de Loo, F. A. & van den Berg, W. B. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice: a comparative study using anti-TNFα, anti-IL-1α/β and IL-1Ra. Arthritis Rheum. 58, S110–122 (2008).View ArticlePubMed
  173. Rudolphi, K., Gerwin, N., Verzijl, N., van der Kraan, P. & van den Berg, W. Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage 11, 738–746 (2003).View ArticlePubMed
  174. Zhang, Q., Lv, H., Chen, A., Liu, F. & Wu, X. Efficacy of infliximab in a rabbit model of osteoarthritis. Connect. Tissue Res. 53, 355–358 (2012).View ArticlePubMed
  175. Urech, D. M. et al. Anti-inflammatory and cartilage-protecting effects of an intra-articularly injected anti-TNFα single-chain Fv antibody (ESBA105) designed for local therapeutic use. Ann. Rheum. Dis. 69, 443–449 (2010).View ArticlePubMed
  176. Koewler, N. J. et al. Effects of a monoclonal antibody raised against nerve growth factor on skeletal pain and bone healing after fracture of the C57BL/6J mouse femur. J. Bone Miner. Res. 22, 1732–1742 (2007).View ArticlePubMed
  177. Moore, E. E. et al. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage 13, 623–631 (2005).View ArticlePubMed
  178. Evans, C. H., Kraus, V. B. & Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 10, 11–22 (2014).View ArticlePubMed
  179. Ou, Y. et al. Selective COX-2 inhibitor ameliorates osteoarthritis by repressing apoptosis of chondrocyte. Med. Sci. Monit. 18, 247–252 (2012).View Article
  180. Bresalier, R. S. et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med. 352, 1092–1102 (2005).View ArticlePubMed
  181. Drazen, J. M. COX-2 inhibitors — a lesson in unexpected problems. N. Engl. J. Med. 352, 1131–1132 (2005).View ArticlePubMed
  182. Nussmeier, N. A. et al. Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. N. Engl. J. Med. 352, 1081–1091 (2005).View ArticlePubMed
  183. Solomon, S. D. et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med. 352, 1071–1080 (2005).View ArticlePubMed
  184. Riendeau, D. et al. Etoricoxib (MK-0663): preclinical profile and comparison with other agents that selectively inhibit cyclooxygenase-2. J. Pharmacol. Exp. Ther. 296, 558–566 (2001).PubMed
  185. Song, G. G. et al. Relative efficacy and tolerability of etoricoxib, celecoxib, and naproxen in the treatment of osteoarthritis: a Bayesian network meta-analysis of randomized controlled trials based on patient withdrawal. Z. Rheumatol. 75, 508–516 (2016).View ArticlePubMed
  186. Croom, K. F. & Siddiqui, M. A. Etoricoxib: a review of its use in the symptomatic treatment of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis and acute gouty arthritis. Drugs 69, 1513–1532 (2009).View ArticlePubMed
  187. Ratcliffe, A. et al. The in vivo effects of naproxen on canine experimental osteoarthritic articular cartilage: composition, metalloproteinase activities and metabolism. Agents Actions Suppl. 39, 207–211 (1993).View ArticlePubMed
  188. Svensson, O., Malmenas, M., Fajutrao, L., Roos, E. M. & Lohmander, L. S. Greater reduction of knee than hip pain in osteoarthritis treated with naproxen, as evaluated by WOMAC and SF-36. Ann. Rheum. Dis. 65, 781–784 (2006).View ArticlePubMed
  189. Coxib and traditional NSAID Trialists' (CNT) Collaboration et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet 382, 769–779 (2013).
  190. Masferrer, J. L. et al. Pharmacology of PF-4191834, a novel, selective non-redox 5-lipoxygenase inhibitor effective in inflammation and pain. J. Pharmacol. Exp. Ther. 334, 294–301 (2010).View ArticlePubMed
  191. Jovanovic, D. V. et al. In vivo dual inhibition of cyclooxygenase and lipoxygenase by ML-3000 reduces the progression of experimental osteoarthritis: suppression of collagenase 1 and interleukin-1β synthesis. Arthritis Rheum. 44, 2320–2330 (2001).View ArticlePubMed
  192. Raynauld, J. P. et al. Protective effects of licofelone, a 5-lipoxygenase and cyclo-oxygenase inhibitor, versus naproxen on cartilage loss in knee osteoarthritis: a first multicentre clinical trial using quantitative MRI. Ann. Rheum. Dis. 68, 938–947 (2009).View ArticlePubMed
  193. Bitto, A. et al. Flavocoxid, a nutraceutical approach to blunt inflammatory conditions. Mediators Inflamm. 2014, 790851 (2014).View ArticlePubMedPubMed Central
  194. Levy, R. M. et al. Efficacy and safety of flavocoxid, a novel therapeutic, compared with naproxen: a randomized multicenter controlled trial in subjects with osteoarthritis of the knee. Adv. Ther. 27, 731–742 (2010).View ArticlePubMed
  195. Chalasani, N. et al. Acute liver injury due to flavocoxid (Limbrel), a medical food for osteoarthritis: a case series. Ann. Intern. Med. 156, 857–860 (2012).View ArticlePubMed
  196. Stefanovic-Racic, M. et al. N-Monomethyl arginine, an inhibitor of nitric oxide synthase, suppresses the development of adjuvant arthritis in rats. Arthritis Rheum. 37, 1062–1069 (1994).View ArticlePubMed
  197. McCartney-Francis, N. et al. Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med. 178, 749–754 (1993).View ArticlePubMed
  198. Miyasaka, N. & Hirata, Y. Nitric oxide and inflammatory arthritides. Life Sci. 61, 2073–2081 (1997).View ArticlePubMed
  199. More, A. S. et al. Effect of iNOS inhibitor S-methylisothiourea in monosodium iodoacetate-induced osteoathritic pain: implication for osteoarthritis therapy. Pharmacol. Biochem. Behav. 103, 764–772 (2013).View ArticlePubMed
  200. Brewster, M., Lewis, E. J., Wilson, K. L., Greenham, A. K. & Bottomley, K. M. Ro 32–3555, an orally active collagenase selective inhibitor, prevents structural damage in the STR/ORT mouse model of osteoarthritis. Arthritis Rheum. 41, 1639–1644 (1998).View ArticlePubMed
  201. Close, D. R. Matrix metalloproteinase inhibitors in rheumatic diseases. Ann. Rheum. Dis. 60 (Suppl. 3), 62–67 (2001).
  202. Fujisawa, T. et al. Highly water-soluble matrix metalloproteinases inhibitors and their effects in a rat adjuvant-induced arthritis model. Bioorg. Med. Chem. 10, 2569–2581 (2002).View ArticlePubMed
  203. Janusz, M. J. et al. Moderation of iodoacetate-induced experimental osteoarthritis in rats by matrix metalloproteinase inhibitors. Osteoarthritis Cartilage 9, 751–760 (2001).View ArticlePubMed
  204. Lewis, E. J. et al. Ro 32–3555, an orally active collagenase inhibitor, prevents cartilage breakdown in vitro and in vivo. Br. J. Pharmacol. 121, 540–546 (1997).View ArticlePubMedPubMed Central