Skip to main content
Top

01-01-2015 | Osteoarthritis | Book Chapter | Article

12. Regenerative Medicine Approaches for Treatment of Osteoarthritis

Authors: Sowmya Viswanathan, PhD, Jesse Wolfstadt, MD, Jaskarndip Chahal, MD, MSc, FRCSC, Alejandro Gómez-Aristizábal, PhD

Publisher: Springer International Publishing

Abstract

  • To be effective, regenerative medicine-based treatment strategies for osteoarthritis (OA) should address multiple aspects of OA, which involves inflammation, loss of chondrocytes, remodeling of subchondral bone and endochondral ossification.
  • Biologics involving growth factors to trigger appropriate chondrocyte proliferation, anti-inflammatory cytokines to combat inflammation, and the use of cartilage transcription factors are being considered in clinical investigations for the treatment of OA.
  • Cellular therapy including autologous chondrocytes, allogeneic cadaveric chondrocytes, mesenchymal stromal cells, and pluripotent stem cell-derived chondrocytes is also being investigated for their ability to directly or indirectly replace the loss of chondrocytes.
  • As part of treatment strategies for OA, natural and synthetic biomaterials are used to mimic the biomechanical properties and function of cartilage, which could be key to providing functional repair of degenerative OA.
Literature
1.
Gerlier L, et al. The cost utility of autologous chondrocytes implantation using ChondroCelect® in symptomatic knee cartilage lesions in Belgium. Pharmacoeconomics. 2010;28(12):1129–46.PubMed
2.
Carticel. About CARTICEL. http://​www.​carticel.​com/​patients/​about.​aspx. Accessed Sept 2014.
3.
MEDIPOST. The future of biotechnology, MEDIPOST. http://​www.​medi-post.​com/​sp_​5_​1.​asp. Accessed Sept 2014.
4.
Dhinsa BS, Adesida AB. Current clinical therapies for cartilage repair, their limitation and the role of stem cells. Curr Stem Cell Res Ther. 2012;7(2):143–8.PubMed
5.
Kapoor M, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42.PubMed
6.
Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011;23(5):471–8.PubMedCentralPubMed
7.
Zamli Z, Sharif M. Chondrocyte apoptosis: a cause or consequence of osteoarthritis? Int J Rheum Dis. 2011;14(2):159–66.PubMed
8.
Loeser RF, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–707.PubMedCentralPubMed
9.
Beyer C, Schett G. Pharmacotherapy: concepts of pathogenesis and emerging treatments. Novel targets in bone and cartilage. Best Pract Res Clin Rheumatol. 2010;24(4):489–96.PubMed
10.
Chevalier X, et al. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J Rheumatol. 2005;32(7):1317–23.PubMed
11.
Baltzer AW, et al. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthritis Cartilage. 2009;17(2):152–60.PubMed
12.
Kon E, et al. Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthroscopy. 2011;27(11):1490–501.PubMed
13.
Cao L, et al. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials. 2011;32(16):3910–20.PubMed
14.
Zhang X, Mao Z, Yu C. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res. 2004;22(4):742–50.PubMed
15.
Steadman JR, et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003;19(5):477–84.PubMed
16.
Johnstone B, et al. Tissue engineering for articular cartilage repair–the state of the art. Eur Cell Mater. 2013;25:248–67.PubMed
17.
Andia I, Abate M. Knee osteoarthritis: hyaluronic acid, platelet-rich plasma or both in association? Expert Opin Biol Ther. 2014;14(5):635–49.PubMed
18.
Bollyky PL, et al. Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4 + CD25+ regulatory T cells. J Leukoc Biol. 2009;86(3):567–72.PubMedCentralPubMed
19.
Muto J, et al. Engagement of CD44 by hyaluronan suppresses TLR4 signaling and the septic response to LPS. Mol Immunol. 2009;47(2–3):449–56.PubMedCentralPubMed
20.
Takahashi T, et al. A decrease in the molecular weight of hyaluronic acid in synovial fluid from patients with temporomandibular disorders. J Oral Pathol Medicine (Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology). 2004;33(4):224–9.
21.
Dahl LB, et al. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Ann Rheum Dis. 1985;44(12):817–22.PubMedCentralPubMed
22.
Scheibner KA, et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177(2):1272–81.PubMed
23.
Zavan B, et al. Hyaluronic acid induces activation of the kappa-opioid receptor. PLoS One. 2013;8(1), e55510.PubMedCentralPubMed
24.
Miller LE, Block JE. US-approved intra-articular hyaluronic acid injections are safe and effective in patients with knee osteoarthritis: systematic review and meta-analysis of randomized, saline-controlled trials. Clin Med Insights Arthritis Musculoskelet Disord. 2013;6:57–63.PubMedCentralPubMed
25.
Rutjes AW, et al. Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. Ann Intern Med. 2012;157(3):180–91.PubMed
26.
Chahal J, et al. The role of platelet-rich plasma in arthroscopic rotator cuff repair: a systematic review with quantitative synthesis. Arthroscopy. 2012;28(11):1718–27.PubMed
27.
Khoshbin A, et al. The efficacy of platelet-rich plasma in the treatment of symptomatic knee osteoarthritis: a systematic review with quantitative synthesis. Arthroscopy. 2013;29(12):2037–48.PubMed
28.
Pourcho AM, et al. Intraarticular platelet-rich plasma injection in the treatment of knee osteoarthritis: review and recommendations. Am J Phys Med Rehabil. 2014;93(11 Suppl 3):S108–21.PubMed
29.
Sundman EA, Cole BJ, Fortier LA. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med. 2011;39(10):2135–40.PubMed
30.
Sundman EA, et al. The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis. Am J Sports Med. 2014;42(1):35–41.PubMed
31.
Chevalier X, Conrozier T. Biological markers for osteoarthritis: an update. Joint Bone Spine. 2005;72(2):106–9.PubMed
32.
Meijer H, et al. The production of anti-inflammatory cytokines in whole blood by physico-chemical induction. Inflamm Res. 2003;52(10):404–7.PubMed
33.
Fox BA, Stephens MM. Treatment of knee osteoarthritis with Orthokine-derived autologous conditioned serum. Expert Rev Clin Immunol. 2010;6(3):335–45.PubMed
34.
Lawrence JT, Birmingham J, Toth AP. Emerging ideas: prevention of posttraumatic arthritis through interleukin-1 and tumor necrosis factor-alpha inhibition. Clin Orthop Relat Res. 2011;469(12):3522–6.PubMedCentralPubMed
35.
Caron JP, et al. Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression. Arthritis Rheum. 1996;39(9):1535–44.PubMed
36.
Elsaid KA, et al. The impact of anterior cruciate ligament injury on lubricin metabolism and the effect of inhibiting tumor necrosis factor alpha on chondroprotection in an animal model. Arthritis Rheum. 2009;60(10):2997–3006.PubMedCentralPubMed
37.
Pintan GF, et al. Update on biological therapies for knee injuries: osteoarthritis. Curr Rev Musculoskelet Med. 2014;7(3):263–9.PubMed
38.
Lane NE, et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med. 2010;363(16):1521–31.PubMed
39.
Brown MT, et al. Tanezumab reduces osteoarthritic knee pain: results of a randomized, double-blind, placebo-controlled phase III trial. J Pain. 2012;13(8):790–8.PubMed
40.
Spierings EL, et al. A phase III placebo- and oxycodone-controlled study of tanezumab in adults with osteoarthritis pain of the hip or knee. Pain. 2013;154(9):1603–12.PubMed
41.
Akagi R, et al. Effective knock down of matrix metalloproteinase-13 by an intra-articular injection of small interfering RNA (siRNA) in a murine surgically-induced osteoarthritis model. J Orthop Res. 2014;32(9):1175–80.PubMed
42.
Madry H, Cucchiarini M. Advances and challenges in gene-based approaches for osteoarthritis. J Gene Med. 2013;15(10):343–55.PubMed
43.
Evans CH, Ghivizzani SC, Robbins PD. Arthritis gene therapy and its tortuous path into the clinic. Transl Res (The Journal of Laboratory and Clinical Medicine). 2013;161(4):205–16.
44.
Demoor M, et al. Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochimica Et Biophysica Acta. 2014;1840(8):2414–40.PubMed
45.
Peterson L, et al. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med. 2010;38(6):1117–24.PubMed
46.
Nawaz SZ, et al. Autologous chondrocyte implantation in the knee: mid-term to long-term results. J Bone Joint Surg Am. 2014;96(10):824–30.PubMed
47.
Harris JD, et al. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am. 2010;92(12):2220–33.PubMed
48.
Brittberg M. Autologous chondrocyte implantation–technique and long-term follow-up. Injury. 2008;39 Suppl 1:S40–9.PubMed
49.
Minas T, et al. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res. 2010;468(1):147–57.PubMedCentralPubMed
50.
Viswanathan S, Gomez-Aristizabal A. Review of patents and commercial opportunities involving Mesenchymal Stromal Cells (MSCs) therapies in osteoarthritis. Recent Pat Regen Med. 2014;4(1):1–15.
51.
Peterson L, et al. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med. 2002;30(1):2–12.PubMed
52.
Farr J, et al. Particulated articular cartilage: CAIS and DeNovo NT. J Knee Surg. 2012;25(1):23–9.PubMed
53.
Cuende N, Rico L, Herrera C. Concise review: bone marrow mononuclear cells for the treatment of ischemic syndromes: medicinal product or cell transplantation? Stem Cells Transl Med. 2012;1(5):403–8.PubMedCentralPubMed
54.
Song F, et al. Comparison of the efficacy of bone marrow mononuclear cells and bone mesenchymal stem cells in the treatment of osteoarthritis in a sheep model. Int J Clin Exp Pathol. 2014;7(4):1415–26.PubMedCentralPubMed
55.
Deng M-W, et al. Cell therapy with G-CSF-mobilized stem cells in a rat osteoarthritis model. Cell Transplant. 2014. [Epub ahead of print]
56.
Dong Z, et al. The survival condition and immunoregulatory function of adipose Stromal Vascular Fraction (SVF) in the early stage of nonvascularized adipose transplantation. PLoS One. 2013;8(11), e80364.PubMedCentralPubMed
57.
Jurgens WJFM, et al. One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. BioRes Open Access. 2013;2(4):315–25.PubMedCentralPubMed
58.
HiQcell. Australian world first placebo-controlled clinical study of HiQCell. Available from: http://​www.​imaginelessjoint​pain.​com.​au/​about-hiqcell-treatment/​clinical-studies/​. Accessed 27 July 2014.
59.
Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109(1):235–42.PubMed
60.
Zuk PA, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.PubMed
61.
Hass R, et al. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.PubMedCentralPubMed
62.
Lee DH, et al. Synovial fluid CD34–CD44+ CD90+ mesenchymal stem cell levels are associated with the severity of primary knee osteoarthritis. Osteoarthritis Cartilage (OARS, Osteoarthritis Research Society). 2012;20(2):106–9.
63.
Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.PubMed
64.
Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6:457–78.PubMed
65.
Vangsness Jr CT, et al. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am. 2014;96(2):90–8.PubMed
66.
Orozco L, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013;95(12):1535–41.PubMed
67.
Wakitani S, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002;10(3):199–206.PubMed
68.
Centeno CJ, et al. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008;11(3):343–53.PubMed
69.
Davatchi F, et al. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011;14(2):211–5.PubMed
70.
Emadedin M, et al. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012;15(7):422–8.PubMed
71.
Koh Y-G, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy (The Journal of Arthroscopic & Related Surgery: Official Publication of the Arthroscopy Association of North America and the International Arthroscopy Association). 2013;29(4):748–55.
72.
Viswanathan S, et al. Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation. Stem Cells Dev. 2014;23(11):1157–67.PubMedCentralPubMed
73.
Oldershaw RA. Cell sources for the regeneration of articular cartilage: the past, the horizon and the future. Int J Exp Pathol. 2012;93(6):389–400.PubMedCentralPubMed
74.
Craft AM, et al. Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development. 2013;140(12):2597–610.PubMed
75.
Diekman BO, et al. Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2012;109(47):19172–7.PubMedCentralPubMed
76.
Sato T, et al. The engineered thymidylate kinase (TMPK)/AZT enzyme-prodrug axis offers efficient bystander cell killing for suicide gene therapy of cancer. PLoS One. 2013;8(10), e78711.PubMedCentralPubMed
77.
Taylor CJ, et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366(9502):2019–25.PubMed
78.
Ishii R, et al. Placenta to cartilage: direct conversion of human placenta to chondrocytes with transformation by defined factors. Mol Biol Cell. 2012;23(18):3511–21.PubMedCentralPubMed
79.
Anz AW, et al. Application of biologics in the treatment of the rotator cuff, meniscus, cartilage, and osteoarthritis. J Am Acad Orthop Surg. 2014;22(2):68–79.PubMed
80.
Filardo G, et al. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy. 2013;29(1):174–86.PubMed
81.
Kock L, van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 2012;347(3):613–27.PubMedCentralPubMed
82.
Myers KR, Sgaglione NA, Grande DA. Trends in biological joint resurfacing. Bone Joint Res. 2013;2(9):193–9.PubMedCentralPubMed
83.
Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17 Suppl 4:467–79.PubMedCentralPubMed
84.
Childs A, et al. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation. Biomed Mater. 2013;8(6):065003.PubMed
85.
Izadifar Z, Chen X, Kulyk W. Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J Funct Biomater. 2012;3(4):799–838.PubMedCentralPubMed
86.
Musumeci G, et al. New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop. 2014;5(2):80–8.PubMedCentralPubMed
87.
Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24.PubMed
88.
Evans CH. Advances in regenerative orthopedics. Mayo Clin Proc. 2013;88(11):1323–39.PubMedCentralPubMed
89.
Willerth SM, Sakiyama-Elbert SE. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. In StemBook. Massachusetts General Hospital. Cambridge, MA; 2008.
90.
Bacakova L, Novotna K, Parizek M. Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction. Physiol Res. 2014;63 Suppl 1:S29–47.PubMed
91.
Kwon H, et al. The influence of scaffold material on chondrocytes under inflammatory conditions. Acta Biomater. 2013;9(5):6563–75.PubMedCentralPubMed
92.
Wakitani S, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994;76(4):579–92.PubMed
93.
Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng. 2006;12(12):3459–65.PubMed
94.
Pulkkinen HJ, et al. Engineering of cartilage in recombinant human type II collagen gel in nude mouse model in vivo. Osteoarthritis Cartilage. 2010;18(8):1077–87.PubMed
95.
Pulkkinen HJ, et al. Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit. Osteoarthritis Cartilage. 2013;21(3):481–90.PubMed
96.
Yang C, et al. The application of recombinant human collagen in tissue engineering. BioDrugs. 2004;18(2):103–19.PubMed
97.
Meinel L, et al. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng. 2004;88(3):379–91.PubMed
98.
Sofia S, et al. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res. 2001;54(1):139–48.PubMed
99.
Worster AA, et al. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res. 2001;19(4):738–49.PubMed
100.
Bulman SE, et al. Enhancing the mesenchymal stem cell therapeutic response: cell localization and support for cartilage repair. Tissue Eng Part B Rev. 2013;19(1):58–68.PubMed
101.
Erickson IE, et al. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater. 2012;8(8):3027–34.PubMedCentralPubMed
102.
Mortisen D, et al. Tailoring thermoreversible hyaluronan hydrogels by “click” chemistry and RAFT polymerization for cell and drug therapy. Biomacromolecules. 2010;11(5):1261–72.PubMed
103.
Stanish WD, et al. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am. 2013;95(18):1640–50.PubMed
104.
Yang Z, et al. Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(L-lactide-co-epsilon-caprolactone) scaffold. Tissue Eng Part A. 2012;18(3–4):242–51.PubMedCentralPubMed
105.
Haaparanta AM, et al. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. J Mater Sci Mater Med. 2014;25(4):1129–36.PubMed
106.
Nguyen LH, et al. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials. 2011;32(29):6946–52.PubMed
107.
Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60(2):243–62.PubMedCentralPubMed
108.
Varghese S, et al. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol. 2008;27(1):12–21.PubMed
109.
Uematsu K, et al. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials. 2005;26(20):4273–9.PubMed
110.
Hori J, et al. Articular cartilage repair using an intra-articular magnet and synovium-derived cells. J Orthop Res. 2011;29(4):531–8.PubMed
111.
Freed LE, et al. Advanced material strategies for tissue engineering scaffolds. Adv Mater. 2009;21(32–33):3410–8.PubMedCentralPubMed
112.
O’Connell GD, et al. Toward engineering a biological joint replacement. J Knee Surg. 2012;25(3):187–96.PubMedCentralPubMed
113.
Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338(6109):917–21.PubMedCentralPubMed