Skip to main content
Top

21-04-2015 | Osteoporosis | Review | Article

A look behind the scenes: the risk and pathogenesis of primary osteoporosis

Journal: Nature Reviews Rheumatology

Authors: Gretl Hendrickx, Eveline Boudin, Wim Van Hul

Authors: Gretl Hendrickx, Eveline Boudin, Wim Van Hul

Publisher: Nature Publishing Group UK

Abstract

Osteoporosis is a common disorder, affecting hundreds of millions of people worldwide, and characterized by decreased bone mineral density and increased fracture risk. Known nonheritable risk factors for primary osteoporosis include advanced age, sex-steroid deficiency and increased oxidative stress. Age is a nonmodifiable risk factor, but the influence of a person's lifestyle (diet and physical activity) on their bone structure and density is modifiable to some extent. Heritable factors influencing bone fragility can be monogenic or polygenic. Osteogenesis imperfecta, juvenile osteoporosis and syndromes of decreased bone density are discussed as examples of monogenic disorders associated with bone fragility. So far, the factors associated with polygenic osteoporosis have been investigated mainly in genome-wide association studies. However, epigenetic mechanisms also contribute to the heritability of polygenic osteoporosis. Identification of these heritable and nonheritable risk factors has already led to the discovery of therapeutic targets for osteoporosis, which emphasizes the importance of research into the pathogenetic mechanisms of osteoporosis. Accordingly, this article discusses the many heritable and nonheritable factors that contribute to the pathogenesis of primary osteoporosis. Although osteoporosis can also develop secondary to many other diseases or their treatment, a discussion of the factors that contribute only to secondary osteoporosis is beyond the scope of this Review.

Nat Rev Rheumatol 2015;11:462–474. doi:10.1038/nrrheum.2015.48

Literature
1.
Abrahamsen, B., van Staa, T., Ariely, R., Olson, M. & Cooper, C. Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos. Int. 20, 1633–1650 (2009).CrossRefPubMed
2.
van den Bergh, J. P., van Geel, T. A. & Geusens, P. P. Osteoporosis, frailty and fracture: implications for case finding and therapy. Nat. Rev. Rheumatol. 8, 163–172 (2012).CrossRefPubMed
3.
Melton, L. J. 3rd. How many women have osteoporosis now? J. Bone Miner. Res. 10, 175–177 (1995).CrossRefPubMed
4.
Randell, A. et al. Direct clinical and welfare costs of osteoporotic fractures in elderly men and women. Osteoporos. Int. 5, 427–432 (1995).CrossRefPubMed
5.
Kanis, J. A. & Johnell, O. Requirements for DXA for the management of osteoporosis in Europe. Osteoporos. Int. 16, 229–238 (2005).CrossRefPubMed
6.
Bachrach, L. K. Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol. Metab. 12, 22–28 (2001).CrossRefPubMed
7.
Sapir-Koren, R. & Livshits, G. Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles? Osteoporos. Int. (2014).
8.
Zuo, C. et al. Osteoblastogenesis regulation signals in bone remodeling. Osteoporos. Int. 23, 1653–1663 (2012).CrossRefPubMed
9.
Garnero, P. The contribution of collagen crosslinks to bone strength. Bonekey Rep. 1, 182 (2012).CrossRefPubMedPubMedCentral
10.
Alliston, T. Biological regulation of bone quality. Curr. Osteoporos. Rep. 12, 366–375 (2014).CrossRefPubMedPubMedCentral
11.
Sroga, G. E. & Vashishth, D. Effects of bone matrix proteins on fracture and fragility in osteoporosis. Curr. Osteoporos. Rep. 10, 141–150 (2012).CrossRefPubMedPubMedCentral
12.
Bouxsein, M. L. & Karasik, D. Bone geometry and skeletal fragility. Curr. Osteoporos. Rep. 4, 49–56 (2006).CrossRefPubMed
13.
Almeida, M. Aging mechanisms in bone. Bonekey Rep. 1, 102 (2012).CrossRefPubMedPubMedCentral
14.
Manolagas, S. C. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr. Rev. 31, 266–300 (2010).CrossRefPubMedPubMedCentral
15.
de Boer, J. et al. Premature aging in mice deficient in DNA repair and transcription. Science 296, 1276–1279 (2002).CrossRefPubMed
16.
Tyner, S. D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45–53 (2002).CrossRefPubMed
17.
Nojiri, H. et al. Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J. Bone Miner. Res. 26, 2682–2694 (2011).CrossRefPubMed
18.
Smietana, M. J., Arruda, E. M., Faulkner, J. A., Brooks, S. V. & Larkin, L. M. Reactive oxygen species on bone mineral density and mechanics in Cu, Zn superoxide dismutase (Sod1) knockout mice. Biochem. Biophys. Res. Commun. 403, 149–153 (2010).CrossRefPubMedPubMedCentral
19.
Ambrogini, E. et al. FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab. 11, 136–146 (2010).CrossRefPubMedPubMedCentral
20.
Almeida, M. Unraveling the role of FoxOs in bone—insights from mouse models. Bone 49, 319–327 (2011).CrossRefPubMedPubMedCentral
21.
Almeida, M., Han, L., Martin-Millan, M., O'Brien, C. A. & Manolagas, S. C. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting β-catenin from T cell factor- to forkhead box O-mediated transcription. J. Biol. Chem. 282, 27298–27305 (2007).CrossRefPubMed
22.
Essers, M. A. et al. Functional interaction between β-catenin and FOXO in oxidative stress signaling. Science 308, 1181–1184 (2005).CrossRefPubMed
23.
Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309–313 (1999).CrossRefPubMed
24.
Nemoto, S. & Finkel, T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295, 2450–2452 (2002).CrossRefPubMed
25.
Giorgio, M. et al. Electron. transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122, 221–233 (2005).CrossRefPubMed
26.
Pacini, S. et al. p66SHC promotes apoptosis and antagonizes mitogenic signaling in T cells. Mol. Cell Biol. 24, 1747–1757 (2004).CrossRefPubMedPubMedCentral
27.
Bartell, S. M. et al. Deletion of the redox amplifier p66shc decreases ROS production in murine bone and increases osteoblast resistance to oxidative stress and bone mass [abstract]. J. Bone Miner. Res. 26 (Suppl. 1), S85 (2011).
28.
Maier, B. et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 18, 306–319 (2004).CrossRefPubMedPubMedCentral
29.
Wang, X. et al. p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. J. Cell Biol. 172, 115–125 (2006).CrossRefPubMedPubMedCentral
30.
Jilka, R. L. et al. Dysfunctional osteocytes increase RANKL and promote cortical pore formation in their vicinity: a mechanistic explanation for the development of cortical porosity with age [abstract]. J. Bone Miner. Res. 27 (Suppl. 1), S348 (2012).
31.
Jilka, R. L. et al. Dysapoptosis of osteoblasts and osteocytes increases cancellous bone formation but exaggerates bone porosity with age. J. Bone Miner. Res. 29, 103–117 (2014).CrossRefPubMed
32.
Tomkinson, A., Gevers, E. F., Wit, J. M., Reeve, J. & Noble, B. S. The role of estrogen in the control of rat osteocyte apoptosis. J. Bone Miner. Res. 13, 1243–1250 (1998).CrossRefPubMed
33.
Almeida, M. et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J. Biol. Chem. 282, 27285–27297 (2007).CrossRefPubMed
34.
Tomkinson, A., Reeve, J., Shaw, R. W. & Noble, B. S. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J. Clin. Endocrinol. Metab. 82, 3128–3135 (1997).PubMed
35.
Frost, H. M. Micropetrosis. J. Bone Joint Surg. Am. 42-A, 144–150 (1960).
36.
Busse, B. et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 9, 1065–1075 (2010).CrossRefPubMed
37.
Carpentier, V. T. et al. Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: implications for bone remodeling. Bone 50, 688–694 (2012).CrossRefPubMed
38.
Manolagas, S. C., O'Brien, C. A. & Almeida, M. The role of estrogen and androgen receptors in bone health and disease. Nat. Rev. Endocrinol. 9, 699–712 (2013).CrossRefPubMedPubMedCentral
39.
Seeman, E. Periosteal bone formation—a neglected determinant of bone strength. N. Engl. J. Med. 349, 320–323 (2003).CrossRefPubMed
40.
Martin-Millan, M. et al. The estrogen receptor-α in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol. Endocrinol. 24, 323–334 (2010).CrossRefPubMedPubMedCentral
41.
Nakamura, T. et al. Estrogen prevents bone loss via estrogen receptor α and induction of Fas ligand in osteoclasts. Cell 130, 811–823 (2007).CrossRefPubMed
42.
Chiang, C. et al. Mineralization and bone resorption are regulated by the androgen receptor in male mice. J. Bone Miner. Res. 24, 621–631 (2009).CrossRefPubMed
43.
Notini, A. J. et al. Osteoblast deletion of exon 3 of the androgen receptor gene results in trabecular bone loss in adult male mice. J. Bone Miner. Res. 22, 347–356 (2007).CrossRefPubMed
44.
Sinnesael, M. et al. Androgen receptor (AR) in osteocytes is important for the maintenance of male skeletal integrity: evidence from targeted AR disruption in mouse osteocytes. J. Bone Miner. Res. 27, 2535–2543 (2012).CrossRefPubMed
45.
Almeida, M. et al. Estrogens attenuate oxidative stress and the differentiation and apoptosis of osteoblasts by DNA-binding-independent actions of the ERα. J. Bone Miner. Res. 25, 769–781 (2010).PubMed
46.
Kousteni, S. et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730 (2001).PubMed
47.
Kousteni, S. et al. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298, 843–846 (2002).CrossRefPubMed
48.
Marathe, N., Rangaswami, H., Zhuang, S., Boss, G. R. & Pilz, R. B. Pro-survival effects of 17β-estradiol on osteocytes are mediated by nitric oxide/cGMP via differential actions of cGMP-dependent protein kinases I and II. J. Biol. Chem. 287, 978–988 (2012).CrossRefPubMed
49.
Seeman, E. Pathogenesis of bone fragility in women and men. Lancet 359, 1841–1850 (2002).CrossRefPubMed
50.
Kaufman, J. M. & Vermeulen, A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr. Rev. 26, 833–876 (2005).CrossRefPubMed
51.
Shahnazari, M. et al. Bone turnover markers in peripheral blood and marrow plasma reflect trabecular bone loss but not endocortical expansion in aging mice. Bone 50, 628–637 (2012).CrossRefPubMed
52.
Syed, F. A. et al. Effects of chronic estrogen treatment on modulating age-related bone loss in female mice. J. Bone Miner. Res. 25, 2438–2446 (2010).CrossRefPubMedPubMedCentral
53.
Zebaze, R. M. et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375, 1729–1736 (2010).CrossRefPubMed
54.
Manolagas, S. C. & Parfitt, A. M. For whom the bell tolls: distress signals from long-lived osteocytes and the pathogenesis of metabolic bone diseases. Bone 54, 272–278 (2013).CrossRefPubMed
55.
Hocking, L. J., Whitehouse, C. & Helfrich, M. H. Autophagy: a new player in skeletal maintenance? J. Bone Miner. Res. 27, 1439–1447 (2012).CrossRefPubMed
56.
Kim, K. H. & Lee, M. S. Autophagy—a key player in cellular and body metabolism. Nat. Rev. Endocrinol. 10, 322–337 (2014).CrossRefPubMed
57.
Zhang, L. et al. Pathway-based genome-wide association analysis identified the importance of regulation-of-autophagy pathway for ultradistal radius BMD. J. Bone Miner. Res. 25, 1572–1580 (2010).CrossRefPubMedPubMedCentral
58.
Rubinsztein, D. C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).CrossRefPubMed
59.
Selman, C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140–144 (2009).CrossRefPubMedPubMedCentral
60.
Chang, Y. Y. et al. Nutrient-dependent regulation of autophagy through the target of rapamycin pathway. Biochem. Soc. Trans. 37, 232–236 (2009).CrossRefPubMed
61.
DeSelm, C. J. et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev. Cell 21, 966–974 (2011).CrossRefPubMedPubMedCentral
62.
Liu, F. et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J. Bone Miner. Res. 28, 2414–2430 (2013).CrossRefPubMed
63.
Onal, M. et al. Suppression of autophagy in osteocytes mimics skeletal aging. J. Biol. Chem. 288, 17432–17440 (2013).CrossRefPubMedPubMedCentral
64.
Bonjour, J. P., Kraenzlin, M., Levasseur, R., Warren, M. & Whiting, S. Dairy in adulthood: from foods to nutrient interactions on bone and skeletal muscle health. J. Am. Coll. Nutr. 32, 251–263 (2013).CrossRefPubMedPubMedCentral
65.
Christodoulou, S., Goula, T., Ververidis, A. & Drosos, G. Vitamin D and bone disease. Biomed. Res. Int. 2013, 396541 (2013).CrossRefPubMed
66.
Eisman, J. A. & Bouillon, R. Vitamin D: direct effects of vitamin D metabolites on bone: lessons from genetically modified mice. Bonekey Rep. 3, 499 (2014).CrossRefPubMedPubMedCentral
67.
Rajendran, P. et al. Antioxidants and human diseases. Clin. Chim. Acta 436C, 332–347 (2014).
68.
Shen, C. L. et al. Fruits and dietary phytochemicals in bone protection. Nutr. Res. 32, 897–910 (2012).CrossRefPubMed
69.
Li, J. J. et al. Fruit and vegetable intake and bone mass in Chinese adolescents, young and postmenopausal women. Public Health Nutr. 16, 78–86 (2013).CrossRefPubMed
70.
New, S. A. et al. Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am. J. Clin. Nutr. 71, 142–151 (2000).CrossRefPubMed
71.
Prynne, C. J. et al. Fruit and vegetable intakes and bone mineral status: a cross sectional study in 5 age and sex cohorts. Am. J. Clin. Nutr. 83, 1420–1428 (2006).CrossRefPubMed
72.
Zalloua, P. A. et al. Impact of seafood and fruit consumption on bone mineral density. Maturitas 56, 1–11 (2007).CrossRefPubMed
73.
Heaney, R. P. & Layman, D. K. Amount and type of protein influences bone health. Am. J. Clin. Nutr. 87, 1567S–1570S (2008).CrossRefPubMed
74.
Sebastian, A. Dietary protein content and the diet's net acid load: opposing effects on bone health. Am. J. Clin. Nutr. 82, 921–922 (2005).CrossRefPubMed
75.
Bonjour, J. P. Nutritional disturbance in acid-base balance and osteoporosis: a hypothesis that disregards the essential homeostatic role of the kidney. Br. J. Nutr. 110, 1168–1177 (2013).CrossRefPubMedPubMedCentral
76.
Bushinsky, D. A. Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am. J. Physiol. 271, F216–F222 (1996).CrossRefPubMed
77.
Leeuwenburgh, C. & Heinecke, J. W. Oxidative stress and antioxidants in exercise. Curr. Med. Chem. 8, 829–838 (2001).CrossRefPubMed
78.
Ozcivici, E. et al. Mechanical signals as anabolic agents in bone. Nat. Rev. Rheumatol. 6, 50–59 (2010).CrossRefPubMedPubMedCentral
79.
Rochefort, G. Y., Pallu, S. & Benhamou, C. L. Osteocyte: the unrecognized side of bone tissue. Osteoporos. Int. 21, 1457–1469 (2010).CrossRefPubMed
80.
Balemans, W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet. 10, 537–543 (2001).CrossRefPubMed
81.
Balemans, W. et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J. Med. Genet. 39, 91–97 (2002).CrossRefPubMedPubMedCentral
82.
Li, X. et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280, 19883–19887 (2005).CrossRefPubMed
83.
Semenov, M., Tamai, K. & He, X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem. 280, 26770–26775 (2005).CrossRefPubMed
84.
Boudin, E., Fijalkowski, I., Piters, E. & Van Hul, W. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin. Arthritis Rheum. 43, 220–240 (2013).CrossRefPubMed
85.
Wang, Y. et al. Wnt and the Wnt signaling pathway in bone development and disease. Front. Biosci. (Landmark Ed.) 19, 379–407 (2014).CrossRef
86.
Maurel, D. B., Boisseau, N., Benhamou, C. L. & Jaffre, C. Alcohol and bone: review of dose effects and mechanisms. Osteoporos. Int. 23, 1–16 (2012).CrossRefPubMed
87.
Ronis, M. J., Mercer, K. & Chen, J. R. Effects of nutrition and alcohol consumption on bone loss. Curr. Osteoporos. Rep. 9, 53–59 (2011).CrossRefPubMedPubMedCentral
88.
Chen, J. R. et al. A role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of Wnt/β-catenin signaling. J. Bone Miner. Res. 25, 1117–1127 (2010).CrossRefPubMed
89.
Chen, J. R., Shankar, K., Nagarajan, S., Badger, T. M. & Ronis, M. J. Protective effects of estradiol on ethanol-induced bone loss involve inhibition of reactive oxygen species generation in osteoblasts and downstream activation of the extracellular signal-regulated kinase/signal transducer and activator of transcription 3/receptor activator of nuclear factor-κB ligand signaling cascade. J. Pharmacol. Exp. Ther. 324, 50–59 (2008).CrossRefPubMed
90.
Kanis, J. A. et al. Smoking and fracture risk: a meta-analysis. Osteoporos. Int. 16, 155–162 (2005).CrossRefPubMed
91.
Ward, K. D. & Klesges, R. C. A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif. Tissue Int. 68, 259–270 (2001).CrossRefPubMedPubMedCentral
92.
Yoon, V., Maalouf, N. M. & Sakhaee, K. The effects of smoking on bone metabolism. Osteoporos. Int. 23, 2081–2092 (2012).CrossRefPubMed
93.
Marini, J. C. & Blissett, A. R. New genes in bone development: what's new in osteogenesis imperfecta. J. Clin. Endocrinol. Metab. 98, 3095–3103 (2013).CrossRefPubMedPubMedCentral
94.
Sillence, D. O., Senn, A. & Danks, D. M. Genetic heterogeneity in osteogenesis imperfecta. J. Med. Genet. 16, 101–116 (1979).CrossRefPubMedPubMedCentral
95.
OMIM® Online Mendelian Inheritance in Man®. An Online Catalog of Human Genes and Genetic Disorders [online], (2015).
96.
Van Dijk, F. S. & Sillence, D. O. Osteogenesis imperfecta: Clinical diagnosis, nomenclature and severity assessment. Am. J. Med. Genet. A 164, 1470–1481 (2014).CrossRefPubMedCentral
97.
Lazarus, S., Zankl, A. & Duncan, E. L. Next-generation sequencing: a frameshift in skeletal dysplasia gene discovery. Osteoporos. Int. 25, 407–422 (2014).CrossRefPubMed
98.
Warman, M. L. et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am. J. Med. Genet. A 155A, 943–968 (2011).CrossRefPubMed
99.
van Dijk, F. S. et al. EMQN best practice guidelines for the laboratory diagnosis of osteogenesis imperfecta. Eur. J. Hum. Genet. 20, 11–19 (2012).CrossRefPubMed
100.
Lazarus, S., Moffatt, P., Duncan, E. L. & Thomas, G. P. A brilliant breakthrough in OI type V. Osteoporos. Int. 25, 399–405 (2014).CrossRefPubMed
101.
Eyre, D. R. & Weis, M. A. Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcif. Tissue Int. 93, 338–347 (2013).CrossRefPubMedPubMedCentral
102.
Gebken, J. et al. Increased cell surface expression of receptors for transforming growth factor-β on osteoblasts from patients with Osteogenesis imperfecta. Pathobiology 68, 106–112 (2000).CrossRefPubMed
103.
Grafe, I. et al. Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta. Nat. Med. 20, 670–675 (2014).CrossRefPubMedPubMedCentral
104.
Lapunzina, P. et al. Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am. J. Hum. Genet. 87, 110–114 (2010).CrossRefPubMedPubMedCentral
105.
Keupp, K. et al. Mutations in WNT1 cause different forms of bone fragility. Am. J. Hum. Genet. 92, 565–574 (2013).CrossRefPubMedPubMedCentral
106.
Laine, C. M. et al. WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N. Engl. J. Med. 368, 1809–1816 (2013).CrossRefPubMedPubMedCentral
107.
Fahiminiya, S. et al. Whole-exome sequencing reveals a heterozygous LRP5 mutation in a 6-year-old boy with vertebral compression fractures and low trabecular bone density. Bone 57, 41–46 (2013).CrossRefPubMed
108.
Korvala, J. et al. Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med. Genet. 13, 26 (2012).CrossRefPubMedPubMedCentral
109.
Crabbe, P. et al. Missense mutations in LRP5 are not a common cause of idiopathic osteoporosis in adult men. J. Bone Miner. Res. 20, 1951–1959 (2005).CrossRefPubMed
110.
van Dijk, F. S. et al. PLS3 mutations in X-linked osteoporosis with fractures. N. Engl. J. Med. 369, 1529–1536 (2013).CrossRefPubMed
111.
Fahiminiya, S. et al. Osteoporosis caused by mutations in PLS3: clinical and bone tissue characteristics. J. Bone Miner. Res. 29, 1805–1814 (2014).CrossRefPubMed
112.
Laine, C. M. et al. Primary osteoporosis without features of OI in children and adolescents: clinical and genetic characteristics. Am. J. Med. Genet. A 158A, 1252–1261 (2012).CrossRefPubMed
113.
Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001).CrossRefPubMed
114.
Narumi, S. et al. Various types of LRP5 mutations in four patients with osteoporosis-pseudoglioma syndrome: identification of a 7.2-kb microdeletion using oligonucleotide tiling microarray. Am. J. Med. Genet. A 152A, 133–140 (2010).CrossRefPubMed
115.
Balemans, W. & Van Hul, W. The genetics of low-density lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology 148, 2622–2629 (2007).CrossRefPubMed
116.
Puig-Hervas, M. T. et al. Mutations in PLOD2 cause autosomal-recessive connective tissue disorders within the Bruck syndrome—osteogenesis imperfecta phenotypic spectrum. Hum. Mutat. 33, 1444–1449 (2012).CrossRefPubMed
117.
Shaheen, R. et al. Mutations in FKBP10 cause both Bruck syndrome and isolated osteogenesis imperfecta in humans. Am. J. Med. Genet. A 155A, 1448–1452 (2011).CrossRefPubMed
118.
Schwarze, U. et al. Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Hum. Mol. Genet. 22, 1–17 (2013).CrossRefPubMed
119.
Peacock, M., Turner, C. H., Econs, M. J. & Foroud, T. Genetics of osteoporosis. Endocr. Rev. 23, 303–326 (2002).CrossRefPubMed
120.
Siris, E. S. et al. Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286, 2815–2822 (2001).CrossRefPubMed
121.
Duncan, E. L. & Brown, M. A. Clinical review 2: Genetic determinants of bone density and fracture risk—state of the art and future directions. J. Clin. Endocrinol. Metab. 95, 2576–2587 (2010).CrossRefPubMed
122.
Ralston, S. H. & Uitterlinden, A. G. Genetics of osteoporosis. Endocr. Rev. 31, 629–662 (2010).CrossRefPubMed
123.
Duncan, E. L. et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 7, e1001372 (2011).CrossRefPubMedPubMedCentral
124.
Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44, 491–501 (2012).CrossRefPubMedPubMedCentral
125.
Medina-Gomez, C. et al. Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet. 8, e1002718 (2012).CrossRefPubMedPubMedCentral
126.
Richards, J. B. et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371, 1505–1512 (2008).CrossRefPubMedPubMedCentral
127.
Rivadeneira, F. et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 41, 1199–1206 (2009).CrossRefPubMedPubMedCentral
128.
Styrkarsdottir, U. et al. Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med. 358, 2355–2365 (2008).CrossRefPubMed
129.
Styrkarsdottir, U. et al. European bone mineral density loci are also associated with BMD in East-Asian populations. PLoS ONE 5, e13217 (2010).CrossRefPubMedPubMedCentral
130.
Zhang, L. et al. Multistage genome-wide association meta-analyses identified two new loci for bone mineral density. Hum. Mol. Genet. 23, 1923–1933 (2014).CrossRefPubMed
131.
Moayyeri, A. et al. Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium. Hum. Mol. Genet. 23, 3054–3068 (2014).CrossRefPubMedPubMedCentral
132.
Oei, L. et al. Genome-wide association study for radiographic vertebral fractures: a potential role for the 16q24 BMD locus. Bone 59, 20–27 (2014).CrossRefPubMedPubMedCentral
133.
Oei, L. et al. A genome-wide copy number association study of osteoporotic fractures points to the 6p25.1 locus. J. Med. Genet. 51, 122–131 (2014).CrossRefPubMed
134.
Chew, S. et al. Homozygous deletion of the UGT2B17 gene is not associated with osteoporosis risk in elderly Caucasian women. Osteoporos. Int. 22, 1981–1986 (2011).CrossRefPubMed
135.
Deng, F. Y. et al. Genome-wide copy number variation association study suggested VPS13B gene for osteoporosis in Caucasians. Osteoporos. Int. 21, 579–587 (2010).CrossRefPubMed
136.
Yang, T. L. et al. Genome-wide copy-number-variation study identified a susceptibility gene, UGT2B17, for osteoporosis. Am. J. Hum. Genet. 83, 663–674 (2008).CrossRefPubMedPubMedCentral
137.
Holroyd, C., Harvey, N., Dennison, E. & Cooper, C. Epigenetic influences in the developmental origins of osteoporosis. Osteoporos. Int. 23, 401–410 (2012).CrossRefPubMed
138.
Vrtacnik, P., Marc, J. & Ostanek, B. Epigenetic mechanisms in bone. Clin. Chem. Lab. Med. 52, 589–608 (2014).CrossRefPubMed
139.
Delgado-Calle, J., Garmilla, P. & Riancho, J. A. Do epigenetic marks govern bone mass and homeostasis? Curr. Genomics 13, 252–263 (2012).CrossRefPubMedPubMedCentral
140.
Cohen-Kfir, E. et al. Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor. Endocrinology 152, 4514–4524 (2011).CrossRefPubMed
141.
Redfern, A. D. et al. RNA-induced silencing complex (RISC) proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc. Natl Acad. Sci. USA 110, 6536–6541 (2013).CrossRefPubMedPubMedCentral
142.
van Wijnen, A. J. et al. MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Curr. Osteoporos. Rep. 11, 72–82 (2013).CrossRefPubMedPubMedCentral
143.
Gamez, B., Rodriguez-Carballo, E. & Ventura, F. MicroRNAs and post-transcriptional regulation of skeletal development. J. Mol. Endocrinol. 52, R179–197 (2014).CrossRefPubMed
144.
Delgado-Calle, J. et al. DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. J. Bone Miner. Res. 27, 926–937 (2012).CrossRefPubMed
145.
Delgado-Calle, J. et al. Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics 7, 83–91 (2012).CrossRefPubMedPubMedCentral
146.
Gelb, B. D., Shi, G. P., Chapman, H. A., & Desnick, R. J. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273, 1236–1238 (1996).CrossRefPubMed
147.
Fijalkowski, I., Boudin, E., Mortier, G. & van Hul, W. Sclerosing bone dysplasias: leads toward novel osteoporosis treatments. Curr. Osteoporos. Rep. 12, 243–251 (2014).CrossRefPubMed
148.
Tella, S. H. & Gallagher, J. C. Biological agents in management of osteoporosis. Eur. J. Clin. Pharmacol. (2014).
149.
McClung, M. R. et al. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 370, 412–420 (2014).CrossRefPubMed
150.
Recker, R. et al. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J. Bone Miner. Res. 30, 216–224 (2015).CrossRefPubMed