Skip to main content
Top

26-02-2017 | Osteoporosis | Book Chapter | Article

New Target Sites for Treatment of Osteoporosis

Authors: Werner E. G. Müller, Xiaohong Wang, Heinz C. Schröder

Publisher: Springer International Publishing

Abstract

In the last few years, much progress has been achieved in the discovery of new drug target sites for treatment of osteoporotic disorders, one of the main challenging diseases with a large burden for the public health systems. Among these new agents promoting bone formation, shifting the impaired equilibrium between bone anabolism and bone catabolism in the direction of bone synthesis are inorganic polymers, in particular inorganic polyphosphates that show strong stimulatory effects on the expression of bone anabolic marker proteins and hydroxyapatite formation. The bone-forming activity of these polymers can even be enhanced by combination with certain small molecules like quercetin, or if given as functionally active particles with certain divalent cations like strontium ions even showing by itself biological activity. This chapter summarizes recent developments in the search and development of novel anti-osteoporotic agents, with a particular focus on therapeutic approaches based on the potential application of inorganic polymers and combinations.
Literature
Abramov AY, Fraley C, Diao CT, Winkfein R, Colicos MA, Duchen MR, French RJ, Pavlov E (2007) Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. Proc Natl Acad Sci USA 104:18091–18096PubMedPubMedCentralCrossRef
Adachi JD (1997) Corticosteroid-induced osteoporosis. Am J Med Sci 313:41–49PubMed
Adell T, Nefkens I, Müller WEG (2003) Polarity factor ‘Frizzled’ in the demosponge Suberites domuncula: identification, expression and localization of the receptor in the epithelium/pinacoderm. FEBS Lett 554:363–368PubMedCrossRef
Adell T, Thakur AN, Müller WEG (2007) Isolation and characterization of Wnt pathway-related genes from Porifera. Cell Biol Int 31:939–949PubMedCrossRef
Agholme F, Isaksson H, Kuhstoss S, Aspenberg P (2011) The effects of Dickkopf-1 antibody on metaphyseal bone and implant fixation under different loading conditions. Bone 48:988–996PubMedCrossRef
Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19:557–566PubMedCrossRef
Ahn V, Chu M, Choi H, Tran D, Abo A, Weis W (2011) Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. Dev Cell 21:862–873PubMedPubMedCentralCrossRef
Akune T (2004) The role of insuline receptor substrates in bone metabolism. Clin Calcium 14:289–292PubMed
Anastasilakis AD, Polyzos SA, Avramidis A, Toulis KA, Papatheodorou A, Terpos E (2010) The effect of teriparatide on serum Dickkopf-1 levels in postmenopausal women with established osteoporosis. Clin Endocrinol 72:752–757CrossRef
Aspenberg P (2006) Osteonecrosis of the jaw: what do bisphosphonates do? Expert Opin Drug Saf 5:743–745PubMedCrossRef
Atchison D, Harding P, Beierwaltes W (2011) Hypercalcemia reduces plasma renin via parathyroid hormone, renal interstitial calcium, and the calcium-sensing receptor. Hypertension 58:604–610PubMedPubMedCentralCrossRef
Austin K, Markovic MA, Brubaker PL (2016) Current and potential therapeutic targets of glucagon-like peptide-2. Curr Opin Pharmacol 31:13–18PubMedCrossRef
Balan G, Bauman J, Bhattacharya S, Castrodad M, Healy DR, Herr M, Humphries P, Jennings S, Kalgutkar AS, Kapinos B, Khot V, Lazarra K, Li M, Li Y, Neagu C, Oliver R, Piotrowski DW, Price D, Qi H, Simmons HA, Southers J, Wei L, Zhang Y, Paralkar VM (2009) The discovery of novel calcium sensing receptor negative allosteric modulators. Bioorg Med Chem Lett 19:3328–3332PubMedCrossRef
Barille S, Pellat-Deceunynck C, Bataille R, Amiot M (1996) Ectopic secretion of osteocalcin, the major non-collagenous bone protein, by the myeloma cell line NCI-H929. J Bone Miner Res 11:466–471PubMedCrossRef
Baron R, Hesse E (2012) Update on bone anabolics in osteoporosis treatment: rationale, current status and perspectives. J Clin Endocrinol Metab 97:311–325PubMedPubMedCentralCrossRef
Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192PubMedCrossRef
Barruet E, Morales BM, Lwin W, White MP, Theodoris CV, Kim H, Urrutia A, Wong SA, Srivastava D, Hsiao EC (2016) The ACVR1 R206H mutation found in fibrodysplasia ossificans progressiva increases human induced pluripotent stem cell-derived endothelial cell formation and collagen production through BMP-mediated SMAD1/5/8 signaling. Stem Cell Res Ther 7:15. doi:10.​1186/​s13287-016-0372-6 CrossRef
Betts AM, Clark TH, Yang J, Treadway JL, Li M, Giovanelli MA, Abdiche Y, Stone DM, Paralkar VM (2010) The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J Pharmacol Exp Ther 1:2–13CrossRef
Bhagwat S, Haytowitz DB, Holden JM (2011) USDA database for the flavonoid content of selected foods; release 3. US Department of Agriculture, Beltsville
Blake G, Fogelman I (2007) Role of dual-energy X-ray absorptiometry in the diagnosis and treatment of osteoporosis. J Clin Densitom 10:102–110PubMedCrossRef
Blick SK, Dhillon S, Keam SJ (2009) Spotlight on teriparatide in osteoporosis. BioDrugs 23:197–199PubMedCrossRef
Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N (2010) Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two year study in postmenopausal women with low bone density. J Bone Miner Res 25:937–947PubMed
Bone HG, Chapurlat R, Brandi ML, Brown JP, Czerwinski E, Krieg MA, Mellström D, Radominski SC, Reginster JY, Resch H, Ivorra JA, Roux C, Vittinghoff E, Daizadeh NS, Wang A, Bradley MN, Franchimont N, Geller ML, Wagman RB, Cummings SR, Papapoulos S (2013) The effect of three or six years of denosumab exposure in women with postmenopausal osteoporosis: results from the FREEDOM extension. J Clin Endocrinol Metab 98:4483–4489PubMedPubMedCentralCrossRef
Bonnelye EA, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42:129–138PubMedCrossRef
Boudin E, Fijalkowski I, Piters E, Van Hul W (2013) The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum 43:220–240PubMedCrossRef
Branca F (2003) Dietary phyto-oestrogens and bone health. Proc Nutr Soc 62:877–887PubMedCrossRef
Bringhurst F (2002) PTH receptors and apoptosis in osteocytes. J Musculoskelet Neuronal Interact 2:245–251PubMed
Brown E (2007) The calcium-sensing receptor: physiology, pathophysiology and CaR-based therapeutics. Subcell Biochem 45:139–167PubMedCrossRef
Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297PubMed
Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268PubMedPubMedCentralCrossRef
Bullamore JR, Wilkinson R, Gallagher JC, Nordin BE, Marshall DH (1970) Effect of age on calcium absorption. Lancet 2(7672):535–537
Butler JS, Murray DW, Hurson CJ, O’Brien J, Doran PP, O’Bryne JM (2011) The role of Dkk1 in bone mass regulation: correlating serum Dkk1 expression with bone mineral density. J Orthop Res 29:414–418PubMedCrossRef
Cabal A, Mehta K, Ross DS, Shrestha RP, Comisar W, Denker A, Pai SM, Ishikawa T (2013) A semimechanistic model of the time-course of release of PTH into plasma following administration of the calcilytic JTT-305/MK-5442 in humans. Bone Miner Res 28:1830–1836CrossRef
Canalis E (2013) Wnt signaling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol 9:575–583PubMedCrossRef
Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ (1996) The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 18:517–523PubMedCrossRef
Choi H, Dieckmann M, Herz J, Niemeier A (2009) Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS ONE 4:e7930PubMedPubMedCentralCrossRef
Cohen-Kfir E, Artsi H, Levin A, Abramowitz E, Bajayo A, Gurt I, Zhong L, D’Urso A, Toiber D, Mostoslavsky R, Dresner-Pollak R (2011) Sirt1 is a regulator of bone mass and a repressor of SOST encoding for sclerostin, a bone formation inhibitor. Endocrinology 152:4514–4524
Compton JT, Lee FY (2014) A review of osteocyte function and the emerging importance of sclerostin. J Bone Joint Surg Am 96:1659–1668PubMedPubMedCentralCrossRef
Cook F, Mumm S, Whyte M, Wenkert D (2014) Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism. J Bone Miner Res 29:922–928PubMedCrossRef
Costa AG, Cusano NE, Silva BC, Cremers S, Bilezikian JP (2011) Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nat Rev Rheumatol 7:447–456PubMedCrossRef
Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767PubMedCrossRef
Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C, Trial FREEDOM (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765PubMedCrossRef
Cummings SR, Ensrud K, Delmas PD, LaCroix AZ, Vukicevic S, Reid DM, Goldstein S, Sriram U, Lee A, Thompson J, Armstrong RA, Thompson DD, Powles T, Zanchetta J, Kendler D, Neven P, Eastell R; PEARL Study Investigators (2010) Lasofoxifene in postmenopausal women with osteoporosis. N Engl J Med 362:686–696
Dalle Carbonare L, Innamorati G, Valenti MT (2012) Transcription factor Runx2 and its application to bone tissue engineering. Stem Cell Rev 8:891–897PubMedCrossRef
Davidge Pitts CJ, Kearns A (2011) Update on Medications with adverse skeletal effects. Mayo Clin Proc 86:338–343PubMedCrossRef
Deal C (2009) Potential new drug targets for osteoporosis. Nat Clin Pract Rheumatol 5:20–27PubMedCrossRef
Devogelaer J (2000) Treatment of bone diseases with bisphosphonates, excluding osteoporosis. Curr Opin Rheumatol 12:331–335PubMedCrossRef
Di Carlo G, Mascolo N, Izzo AA, Capasso F (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65:337–353PubMedCrossRef
Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163PubMedCrossRef
Dunnick JK, Hailey JR (1992) Toxicity and carcinogenicity studies of quercetin, a natural component of foods. Fundam Appl Toxicol 19:423–431PubMedCrossRef
Eisman JA, Bone HG, Hosking DJ, McClung MR, Reid IR, Rizzoli R (2011) Odanacatib in the treatment of postmenopausal women with low bone mineral density: three year continued therapy and resolution effect. J Bone Miner Res 26:242–251PubMedCrossRef
Fajardo RJ, Manoharan RK, Pearsall RS, Davies MV, Marvell T, Monnell TE, Ucran JA, Pearsall AE, Khanzode D, Kumar R, Underwood KW, Roberts B, Seehra J, Bouxsein ML (2010) Treatment with a soluble receptor for activin improves bone mass and structure in the axial and appendicular skeleton of female cynomolgus macaques (Macaca fascicularis). Bone 46:64–71PubMedCrossRef
Fleisch H (2002) Development of bisphosphonates. Breast Cancer Res 4:30–34PubMedCrossRef
Fleisch H, Straumann F, Schenk R, Bisaz S, Allgöwer M (1966) Effect of condensed phosphates on calcification of chick embryo femurs in tissue culture. Am J Physiol 211:821–825PubMed
Fraher LJ, Avram R, Watson PH, Hendy GN, Henderson JE, Chong KL, Goltzman D, Morley P, Willick GE, Whitfield JF, Hodsman AB (1999) Comparison of the biochemical responses to human parathyroid hormone-(1–31)NH2 and hPTH-(1–34) in healthy humans. J Clin Endocrinol Metab 84:2739–2743PubMed
Fraser W, Ahmad A, Vora J (2004) The physiology of the circadian rhythm of parathyroid hormone and its potential as a treatment for osteoporosis. Curr Opin Nephrol Hypertens 13:437–444PubMedCrossRef
Fromigue O, Hay E, Barbara A, Petrel C, Traiffort E, Ruat M, Marie PJ (2009) Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med 13:2189–2199PubMedCrossRef
Fujiwara M, Kubota T, Wang W, Ohata Y, Miura K, Kitaoka T, Okuzaki D, Namba N, Michigami T, Kitabatake Y, Ozono K (2016) Successful induction of sclerostin in human-derived fibroblasts by 4 transcription factors and its regulation by parathyroid hormone, hypoxia, and prostaglandin E2. Bone 85:91–98PubMedCrossRef
Gallagher JC, Tella SH (2014) Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol 142:155–170PubMedCrossRef
Gardner MJ, Demetrakopoulos D, Shindle MK, Griffith MH, Lane JM (2006) Osteoporosis and skeletal fractures. HSS J 2:62–69PubMedPubMedCentralCrossRef
Garnero P (2008) Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring. Mol Diagn Ther 12:157–170PubMedCrossRef
Gaudio A, Privitera F, Battaglia K, Torrisi V, Sidoti M, Pulvirenti I, Canzonieri E, Tringali G, Fiore CE (2012) Sclerostin levels associated with inhibition of the Wnt/β-catenin signaling and reduced bone turnover in type 2 diabetes mellitus. J Clin Endocrinol Metab 97:3744–3750PubMedCrossRef
Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong LT, Falgueyret JP, Kimmel DB, Lamontagne S, Léger S, LeRiche T, Li CS, Massé F, McKay DJ, Nicoll-Griffith DA, Oballa RM, Palmer JT, Percival MD, Riendeau D, Robichaud J, Rodan GA, Rodan SB, Seto C, Thérien M, Truong VL, Venuti MC, Wesolowski G, Young RN, Zamboni R, Black WC (2008) The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 18:923–928PubMedCrossRef
Genetos DC, Toupadakis CA, Raheja LF, Wong A, Papanicolaou SE, Fyhrie DP, Loots GG, Yellowley CE (2010) Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem 110:457–467PubMedPubMedCentral
Glantschnig H, Hampton R, Lu P, Zhao J, Vitelli S, Huang L, Haytko P, Cusick T, Ireland C, Jarantow SW, Ernst R, Wei N, Nantermet P, Scott KR, Fisher JE, Talamo F, Orsatti L, Reszka AA, Sandhu P, Kimmel D, Flores O, Strohl W, An Z, Wang F (2010) Generation and selection of novel fully human monoclonal antibodies that neutralize Dickkopf-1 (DKK1) inhibitory function in vitro and increase bone mass in vivo. J Biol Chem 285:40135–40147PubMedPubMedCentralCrossRef
Glantschnig H, Scott K, Hampton R, Wei N, Mccracken P, Nantermet P, Zhao JZ, Vitelli S, Huang L, Haytko P, Lu P, Fisher JE, Sandhu P, Cook J, Williams D, Strohl W, Flores O, Kimmel D, Wang F, An Z (2011) A rate-limiting role for Dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody. J Pharmacol Exp Ther 338:568–578
Gowen M, Stroup GB, Dodds RA, James IE, Votta BJ, Smith BR, Bhatnagar PK, Lago AM, Callahan JF, DelMar EG, Miller MA, Nemeth EF, Fox J (2000) Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats. J Clin Invest 105:1595–1604PubMedPubMedCentralCrossRef
Gu Z, Zhang X, Li L, Wang Q, Yu X, Feng T (2013) Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts. Mater Sci Eng C 33:274–281CrossRef
Guder C, Pinho S, Nacak TG, Schmidt HA, Hobmayer B, Niehrs C, Holstein TW (2006) An ancient Wnt-Dickkopf antagonism in Hydra. Development 133:901–911PubMedCrossRef
Hannon RA, Clack G, Rimmer M, Swaisland A, Lockton JA, Finkelman RD, Eastell R (2010) Effects of the Src kinase inhibitor saracatinib (AZD0530) on bone turnover in healthy men: a randomized, double-blind, placebo-controlled, multiple-ascending-dose phase I trial. J Bone Miner Res 25:463–471PubMedCrossRef
Heiland GR, Zwerina K, Baum W, Kireva T, Distler JH, Grisanti M, Asuncion F, Li X, Ominsky M, Richards W, Schett G, Zwerina J (2010) Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis 69:2152–2159PubMedCrossRef
Henriksen DB, Alexandersen P, Byrjalsen I, Hartmann B, Bone HG, Christiansen C, Holst JJ (2004) Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. Bone 34:140–147PubMedCrossRef
Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, Holst JJ, Christiansen C (2009) Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone 45:833–842PubMedCrossRef
Henriksen K, Andersen JR, Riis BJ, Mehta N, Tavakkol R, Alexandersen P, Byrjalsen I, Valter I, Nedergaard BS, Teglbjaerg CS, Stern W, Sturmer A, Mitta S, Nino AJ, Fitzpatrick LA, Christiansen C, Karsdal MA (2013) Evaluation of the efficacy, safety and pharmacokinetic profile of oral recombinant human parathyroid hormone [rhPTH(1–31)NH2] in postmenopausal women with osteoporosis. Bone 53:160–166PubMedCrossRef
Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millan JL (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449PubMedPubMedCentralCrossRef
Hoeppner L, Secreto F, Westendorf J (2009) Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets 13:485–496PubMedPubMedCentralCrossRef
Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12PubMedCrossRef
Hopkins RB, Tarride JE, Leslie WD, Metge C, Lix LM, Morin S, Finlayson G, Azimaee M, Pullenayegum E, Goeree R, Adachi JD, Papaioannou A, Thabane L (2013) Estimating the excess costs for patients with incident fractures, prevalent fractures, and nonfracture osteoporosis. Osteoporos Int 24:581–593PubMedCrossRef
Itoh T, Takeda S, Akao Y (2010) MicroRNA-208 modulates BMP-2-stimulated mouse preosteoblast differentiation by directly targeting V-ets erythroblastosis virus E26 oncogene homolog 1. J Biol Chem 285:27745–27752PubMedPubMedCentralCrossRef
Itoh T, Ando M, Tsukamasa Y, Akao Y (2012) Expression of BMP-2 and Ets1 in BMP-2- stimulated mouse pre-osteoblast differentiation is regulated by microRNA-370. FEBS Lett 586:1693–1701PubMedCrossRef
Jang WG, Kim EJ, Kim DK, Ryoo HM, Lee KB, Kim SH, Choi HS, Koh JT (2012) BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription. J Biol Chem 287:905–915PubMedCrossRef
John MR, Widler L, Gamse R, Buhl T, Seuwen K, Breitenstein W, Bruin GJ, Belleli R, Klickstein LB, Kneissel M (2011) ATF936, a novel oral calcilytic, increases bone mineral density in rats and transiently releases parathyroid hormone in humans. Bone 49:233–241PubMedCrossRef
Johnson KA, Hessle L, Vaingankar S, Wennberg C, Mauro S, Narisawa S, Goding JW, Sano K, Millan JL, Terkeltaub R (2000) Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates PC-1. Am J Physiol Regul Integr Comp Physiol 279:R1365–R1377PubMed
Kalinova J, Vrchotova N (2009) Level of catechin, myricetin, quercetin and isoquercitrin in buckwheat (Fagopyrum esculentum Moench), changes of their levels during vegetation and their effect on the growth of selected weeds. J Agric Food Chem 57:2719–2725PubMedCrossRef
Kanis JA (1994) WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int 4:368–381PubMedCrossRef
Khan A, Khan A (2006) Anabolic agents: a new chapter in the management of osteoporosis. J Obstet Gynaecol Can 28:136–141PubMedCrossRef
Khosla S, Burr D, Cauley J, Dempster DW, Ebeling PR, Felsenberg D, Gagel RF, Gilsanz V, Guise T, Koka S, McCauley LK, McGowan J, McKee MD, Mohla S, Pendrys DG, Raisz LG, Ruggiero SL, Shafer DM, Shum L, Silverman SL, Van Poznak CH, Watts N, Woo SB, Shane E; American Society for Bone and Mineral Research (2007) Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 22:1479–1491
Kim HJ, Kim SH (2010) Tanshinone IIA enhances BMP-2-stimulated commitment of C2C12 cells into osteoblasts via p38 activation. Amino Acids 39:1217–1226PubMedCrossRef
Kim YJ, Bae YC, Suh KT, Jung JS (2006) Quercetin, a flavonoid, inhibits proliferation and increases osteogenic differentiation in human adipose stromal cells. Biochem Pharmacol 72:1268–1278PubMedCrossRef
Kim JB, Leucht P, Lam K, Luppen C, Ten Berge D, Nusse R, Helms JA (2007) Bone regeneration is regulated by wnt signaling. J Bone Miner Res 22:1913–1923PubMedCrossRef
Kim JH, Liu X, Wang J, Chen X, Zhang H, Kim SH, Cui J, Li R, Zhang W, Kong Y, Zhang J, Shui W, Lamplot J, Rogers MR, Zhao C, Wang N, Rajan P, Tomal J, Statz J, Wu N, Luu HH, Haydon RC, He TC (2013) Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther Adv Musculoskelet Dis 5:13–31PubMedPubMedCentralCrossRef
Kong WN (2012) Potential role of odanacatib in the treatment of osteoporosis. Clin Interv Aging 12:235–247
Kornberg A, Rao NN, Ault-Riche D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125PubMedCrossRef
Košinová P, Berka K, Wykes M, Otyepka M, Trouillas P (2012) Positioning of antioxidant quercetin and its metabolites in lipid bilayer membranes: implication for their lipid-peroxidation inhibition. J Phys Chem B 116:1309–1318PubMedCrossRef
Kulkarni NH, Onyia JE, Zeng Q, Tian X, Liu M, Halladay DL, Frolik CA, Engler T, Wei T, Kriauciunas A, Martin TJ, Sato M, Bryant HU, Ma YL (2006) Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res 21:910–920PubMedCrossRef
Kumar S, Matheny CJ, Hoffman SJ, Marquis RW, Schultz M, Liang X, Vasko JA, Stroup GB, Vaden VR, Haley H, Fox J, DelMar EG, Nemeth EF, Lago AM, Callahan JF, Bhatnagar P, Huffman WF, Gowen M, Yi B, Danoff TM, Fitzpatrick LA (2010) An orally active calcium-sensing receptor antagonist that transiently increases plasma concentrations of PTH and stimulates bone formation. Bone 46:534–542PubMedCrossRef
Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194(Suppl):S3–S11PubMedCrossRef
Langdahl B, Binkley N, Bone H, Gilchrist N, Resch H, Rodriguez Portales J, Denker A, Lombardi A, Le Bailly De Tilleghem C, Dasilva C, Rosenberg E, Leung A (2012) Danacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study. J Bone Miner Res 27:2251–2258
Lee D, Kim H, Ku S, Kim S, Choi Y, Kim J (2010) Association between polymorphisms in Wnt signaling pathway genes and bone mineral density in postmenopausal Korean women. Menopause 17:1064–1070PubMedCrossRef
Leibbrandt A, Penninger JM (2008) RANK/RANKL: regulators of immune responses and bone physiology. Ann NY Acad Sci 1143:123–150PubMedCrossRef
Lengfeld T, Watanabe H, Simakov O, Lindgens D, Gee L, Law L, Schmidt HA, Ozbek S, Bode H, Holstein TW (2009) Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev Biol 330:186–199PubMedCrossRef
Lewiecki E (2013) Monoclonal antibodies for the treatment of osteoporosis. Expert Opin Biol Ther 13:183–196PubMedCrossRef
Leyhausen G, Lorenz B, Zhu H, Geurtsen W, Bohnensack R, Müller WEG, Schröder HC (1998) Inorganic polyphosphate in human osteoblast-like cells. J Bone Miner Res 13:803–812PubMedCrossRef
Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, Morony S, Adamu S, Geng Z, Qiu W, Kostenuik P, Lacey DL, Simonet WS, Bolon B, Qian X, Shalhoub V, Ominsky MS, Zhu Ke H, Li X, Richards WG (2006) Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39:754–766PubMedCrossRef
Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24:578–588PubMedCrossRef
Li X, Warmington KS, Niu QT, Asuncion FJ, Barrero M, Grisanti M, Dwyer D, Stouch B, Thway TM, Stolina M, Ominsky MS, Kostenuik PJ, Simonet WS, Paszty C, Ke HZ (2010) Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res 25:2647–2656PubMedCrossRef
Li X, Grisanti M, Fan W, Asuncion FJ, Tan HL, Dwyer D, Han CY, Yu L, Lee J, Lee E, Barrero M, Kurimoto P, Niu QT, Geng Z, Winters A, Horan T, Steavenson S, Jacobsen F, Chen Q, Haldankar R, Lavallee J, Tipton B, Daris M, Sheng J, Lu HS, Daris K, Deshpande R, Valente EG, Salimi-Moosavi H, Kostenuik PJ, Li J, Liu M, Li C, Lacey DL, Simonet WS, Ke HZ, Babij P, Stolina M, Ominsky MS, Richards WG (2011) Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res 26:2610–2621PubMedCrossRef
Lim V, Clarke B (2012) New therapeutic targets for osteoporosis: beyond denosumab. Maturitas 73:269–272PubMedCrossRef
Lindsay R (1996) The menopause and osteoporosis. Obstet Gynecol 87:16S–19SPubMedCrossRef
Lorenz B, Schröder HC (2001) Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase. Biochim Biophys Acta 1547:254–261PubMedCrossRef
Lorenz B, Münkner J, Oliveira MP, Kuusksalu A, Leitão JM, Müller WEG, Schröder HC (1997) Changes in metabolism of inorganic polyphosphate in rat tissues and human cells during development and apoptosis. Biochim Biophys Acta 1335:51–60PubMedCrossRef
MacLean C, Newberry S, Maglione M, McMahon M, Ranganath V, Suttorp M, Mojica W, Timmer M, Alexander A, McNamara M, Desai SB, Zhou A, Chen S, Carter J, Tringale C, Valentine D, Johnsen B, Grossman J (2008) Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Intern Med 148:197–213PubMedCrossRef
Maeda A, Okazaki M, Baron DM, Dean T, Khatri A, Mahon M, Segawa H, Abou-Samra AB, Jüppner H, Bloch KD, Potts JT Jr, Gardella TJ (2013) Critical role of parathyroid hormone (PTH) receptor-1 phosphorylation in regulating acute responses to PTH. Proc Natl Acad Sci USA 110:5864–5869PubMedPubMedCentralCrossRef
Malinauskas T, Jones EY (2014) Extracellular modulators of Wnt signalling. Curr Opin Struct Biol 29:77–84PubMedCrossRef
Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, Delius H, Hoppe D, Stannek P, Walter C, Glinka A, Niehrs C (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature 417:664–667PubMedCrossRef
Marenzana M, Greenslade K, Eddleston A, Okoye R, Marshall D, Moore A, Robinson MK (2011) Sclerostin antibody treatment enhances bone strength but does not prevent growth retardation in young mice treated with dexamethasone. Arthritis Rheum 63:2385–2395PubMedCrossRef
Marie PJ (2006) Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol 18(Suppl1):S11–S15PubMedCrossRef
McColm J, Hu L, Womack T, Tang CC, Chiang AY (2014) Single- and multiple-dose randomized studies of blosozumab, a monoclonal antibody against sclerostin, in healthy postmenopausal women. J Bone Miner Res 29:935–943PubMedCrossRef
Mezesova L, Bartekova M, Javorkova V, Vlkovicova J, Breier A, Vrbjar N (2010) Effect of quercetin on kinetic properties of renal Na, K-ATPase in normotensive and hypertensive rats. J Physiol Pharmacol 61:593–598PubMed
Miller PD, Chines AA, Christiansen C (2008) Effects of bazedoxifene on BMD and bone turnover in postmenopausal women: 2-yr results of a randomized, double-blind, placebo-, and active-controlled study. J Bone Miner Res 23:525–535PubMedCrossRef
Minisola G, Iuliano A, Prevete I (2014) Emerging therapies for osteoporosis. Reumatismo 66:112–124PubMedCrossRef
Miyazaki T, Sanjay A, Neff L, Tanaka S, Horne WC, Baron R (2004) Src kinase activity is essential for osteoclast function. J Biol Chem 279:17660–17666PubMedCrossRef
Morrissey JH, Choi SH, Smith SA (2012) Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood 119:5972–5979PubMedPubMedCentralCrossRef
Mosley J (2000) Osteoporosis and bone functional adaptation: mechanobiological regulation of bone architecture in growing and adult bone, a review. J Rehabil Res Dev 37:189–199PubMed
Müller WEG, Wang XH, Diehl-Seifert B, Kropf K, Schloßmacher U, Lieberwirth I, Glasser G, Wiens M, Schröder HC (2011) Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomater 7:2661–2671PubMedCrossRef
Müller WEG, Schröder HC, Schlossmacher U, Grebenjuk VA, Ushijima H, Wang XH (2013a) Induction of carbonic anhydrase in SaOS-2 cells, exposed to bicarbonate and consequences for calcium phosphate crystal formation. Biomaterials 34:8671–8680PubMedCrossRef
Müller WEG, Wang XH, Grebenjuk V, Diehl-Seifert B, Steffen R, Schloßmacher U, Trautwein A, Neumann S, Schröder HC (2013b) Silica as a morphogenetically active inorganic polymer: effect on the BMP-2-dependent and RUNX2-independent pathway in osteoblast-like SaOS-2 cells. Biomater Sci 1:669–678CrossRef
Müller WEG, Tolba E, Feng QL, Schröder HC, Markl JS, Kokkinopoulou M, Wang XH (2015a) Amorphous Ca2+ polyphosphate nanoparticles regulate the ATP level in bone-like SaOS-2 cells. J Cell Sci 128:2202–2207PubMedCrossRef
Müller WEG, Tolba E, Schröder HC, Wang XH (2015b) Polyphosphate: a morphogenetically active implant material serving as metabolic fuel for bone regeneration. Macromol Biosci 15:1182–1197PubMedCrossRef
Müller WEG, Tolba E, Schröder HC, Wang SF, Glaßer G, Muñoz-Espí R, Link T, Wang XH (2015c) A new polyphosphate calcium material with morphogenetic activity. Mater Lett 148:163–166CrossRef
Müller WEG, Schröder HC, Tolba E, Neufurth M, Diehl-Seifert B, Wang XH (2016a) Mineralization of bone-related SaOS-2 cells under physiological hypoxic conditions. FEBS J 283:74–87PubMedCrossRef
Müller WEG, Tolba E, Neufurth M, Wang SF, Ackermann M, Feng QL, Schröder HC, Wang XH (2016b) Fabrication of amorphous strontium polyphosphate microparticles that induce mineralization of bone cells in vitro and in vivo. Submitted
Murakami T, Saito A, Hino S, Kondo S, Kanemoto S, Chihara K, Sekiya H, Tsumagari K, Ochiai K, Yoshinaga K, Saitoh M, Nishimura R, Yoneda T, Kou I, Furuichi T, Ikegawa S, Ikawa M, Okabe M, Wanaka A, Imaizumi K (2009) Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat Cell Biol 11:1205–1211PubMedCrossRef
Murphy MG, Cerchio S, Stoch A, Gottesdiener K, Wu M, Recker R (2005) Effect of L000845704, an αvβ3 integrin antagonist, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women. J Clin Endocrinol Metab 90:2022–2028PubMedCrossRef
Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441PubMedCrossRef
Nemeth EF (2002) The search for calcium receptor antagonists (calcilytics). J Mol Endocrinol 29:15–21PubMedCrossRef
Nemeth E (2004) Calcimimetic and calcilytic drugs: just for parathyroid cells? Cell Calcium 35:283–289PubMedCrossRef
Neuprez A, Hiligsmann M, Scholtissen S, Bruyere O, Reginster JY (2008) Strontium ranelate: the first agent of a new therapeutic class in osteoporosis. Adv Ther 25:1235–1256PubMedCrossRef
Niedźwiedzki T, Filipowska J (2015) Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system. J Mol Endocrinol 55:R23–R36PubMedCrossRef
Nielsen SP (2004) The biological role of strontium. Bone 35:583–588CrossRef
Notoya M, Tsukamoto Y, Nishimura H, Woo JT, Nagai K, Lee IS, Hagiwara H (2004) Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur J Pharmacol 485:89–96PubMedCrossRef
Oh WJ, Endale M, Park SC, Cho JY, Rhee MH (2012) Dual roles of quercetin in platelets: phosphoinositide-3-kinase and MAP kinases inhibition, and cAMP-dependent vasodilator-stimulated phosphoprotein stimulation. Evid Based Complement Alternat Med 2012:485262. doi:10.​1155/​2012/​485262 PubMedPubMedCentral
Okuducu AF, Zils U, Michaelis SA, Mawrin C, von Deimling A (2006) Increased expression of avian erythroblastosis virus E26 oncogene homolog 1 in World Health Organization grade 1 meningiomas is associated with an elevated risk of recurrence and is correlated with the expression of its target genes matrix metalloproteinase-2 and ΜMP-9. Cancer 107:1365–1372PubMedCrossRef
Omelon SJ, Grynpas MD (2008) Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem Rev 108:4694–4715PubMedCrossRef
Omelon S, Georgiou J, Henneman ZJ, Wise LM, Sukhu B, Hunt T, Wynnyckyj C, Holmyard D, Bielecki R, Grynpas MD (2009) Control of vertebrate skeletal mineralization by polyphosphates. PLoS ONE 4:e5634. doi:10.​1371/​journal.​pone.​0005634 PubMedPubMedCentralCrossRef
Ominsky MS, Li C, Li X, Tan HL, Lee E, Barrero M, Asuncion FJ, Dwyer D, Han CY, Vlasseros F, Samadfam R, Jolette J, Smith SY, Stolina M, Lacey DL, Simonet WS, Paszty C, Li G, Ke HZ (2011) Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner 26:1012–1021CrossRef
Pacifici R (1996) Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 11:1043–1051PubMedCrossRef
Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26PubMedCrossRef
Paulke A, Eckert GP, Schubert-Zsilavecz M, Wurglics M (2012) Isoquercitrin provides better bioavailability than quercetin: comparison of quercetin metabolites in body tissue and brain sections after six days administration of isoquercitrin and quercetin. Pharmazie 67:991–996PubMed
Pavlov E, Aschar-Sobbi R, Campanella M, Turner RJ, Gómez-García MR, Abramov AY (2010) Inorganic polyphosphate and energy metabolism in mammalian cells. J Biol Chem 285:9420–9428PubMedPubMedCentralCrossRef
Peng S, Liu XS, Huang S, Li Z, Pan H, Zhen W, Luk KD, Guo XE, Lu WW (2011) The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Bone 49:1290–1298PubMedCrossRef
Pereira M, Jeyabalan J, Jørgensen CS, Hopkinson M, Al-Jazzar A, Roux JP, Chavassieux P, Orriss IR, Cleasby ME, Chenu C (2015) Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone 81:459–467PubMedCrossRef
Prouillet C, Mazière JC, Mazière C, Wattel A, Brazier M, Kamel S (2004) Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol 67:1307–1313PubMedCrossRef
Qin DW, Gu Z, Dai L, Ji C (2013) Protective effects of gallium, germanium, and strontium against ovariectomized osteoporosis in rats. Biol Trace Elem Res 153:350–354PubMedCrossRef
Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115:3318–3325PubMedPubMedCentralCrossRef
Recker RR, Benson CT, Matsumoto T, Bolognese MA, Robins DA, Alam J, Chiang AY, Hu L, Krege JH, Sowa H, Mitlak BH, Myers SL (2015) A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res 30:216–224PubMedCrossRef
Reginster JY, Brandi ML, Cannata-Andía J, Cooper C, Cortet B, Feron JM, Genant H, Palacios S, Ringe JD, Rizzoli R (2015) The position of strontium ranelate in today’s management of osteoporosis. Osteoporos Int 26:1667–1671PubMedCrossRef
Reid IR (2008) Anti-resorptive therapies for osteoporosis. Semin Cell Dev Biol 19:473–478PubMedCrossRef
Riccardi D (2012) Antagonizing the calcium-sensing receptor: towards new bone anabolics? Curr Mol Pharmacol 5:182–188PubMedCrossRef
Riggs BL, Khosla S, Melton LJ (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773PubMedCrossRef
Rizzoli R, Burlet N, Cahall D, Delmas PD, Eriksen EF, Felsenberg D, Grbic J, Jontell M, Landesberg R, Laslop A, Wollenhaupt M, Papapoulos S, Sezer O, Sprafka M, Reginster JY (2008) Osteonecrosis of the jaw and bisphosphonate treatment for osteoporosis. Bone 42:841–847PubMedCrossRef
Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875PubMedCrossRef
Rochefort GY (2014) The osteocyte as a therapeutic target in the treatment of osteoporosis. Ther Adv Musculoskel Dis 6:79–91CrossRef
Rodan SB, Duong LT (2008) Cathepsin K—a new molecular target for osteoporosis. Bonekey Osteovision 5:16–24
Römer P, Behr M, Proff P, Faltermeier A, Reicheneder C (2011) Effect of strontium on human Runx2+/- osteoblasts from a patient with cleidocranial dysplasia. Eur J Pharmacol 654:195–199PubMedCrossRef
Russell RG, Croucher PI, Rogers MJ (1999) Bisphosphonates: pharmacology, mechanisms of action and clinical uses. Osteoporos Int 9(Suppl 2):S66–S80PubMedCrossRef
Rybchyn MS, Slater M, Conigrave AD, Mason RS (2011) An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts. J Biol Chem 286:23771–23779PubMedPubMedCentralCrossRef
Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367:2010–2018PubMedCrossRef
Sassi N, Laadhar L, Allouche M, Zandieh-Doulabi B, Hamdoun M, Klein-Nulend J, Makni S, Sellami S (2013) The roles of canonical and non-canonical Wnt signaling in human de-differentiated articular chondrocytes. Biotech Histochem 13:384–392
Schnatz P, Marakovits K, O’Sullivan D (2010) Assessment of postmenopausal women and significant risk factors for osteoporosis. Obstet Gynecol Surv 65:591–596PubMedCrossRef
Scholtysek C, Katzenbeisser J, Fu H, Uderhardt S, Ipseiz N, Stoll C, Zaiss MM, Stock M, Donhauser L, Böhm C, Kleyer A, Hess A, Engelke K, David JP, Djouad F, Tuckermann JP, Desvergne B, Schett G, Krönke G (2013) PPARβ/δ governs Wnt signaling and bone turnover. Nat Med 19:608–613PubMedCrossRef
Schröder HC, Wiens M, Wang XH, Schloßmacher U, Müller WEG (2011) Biosilica-based strategies for treatment of osteoporosis and other bone diseases. Prog Mol Subcell Biol 52:283–312PubMedCrossRef
Selenge E, Murata T, Kobayashi K, Batkhuu J, Yoshizaki F (2013) Flavone tetraglycosides and benzyl alcohol glycosides from the Mongolian medicinal plant Dracocephalum ruyschiana. J Nat Prod 76:186–193PubMedCrossRef
Shah AD, Shoback D, Lewiecki EM (2015) Sclerostin inhibition: a novel therapeutic approach in the treatment of osteoporosis. Int J Womens Health 7:565–580PubMedPubMedCentral
Shevde NK, Bendixen AC, Dienger KM, Pike JW (2000) Estrogens suppress RANK ligandinduced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci USA 97:7829–7834PubMedPubMedCentralCrossRef
Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319PubMedCrossRef
Singer A, Grauer A (2010) Denosumab for the management of postmenopausal osteoporosis. Postgrad Med 122:176–187PubMedCrossRef
Son YO, Kook SH, Choi KC, Jang YS, Jeon YM, Kim JG, Lee KY, Kim J, Chung MS, Chung GH, Lee JC (2006) Quercetin, a bioflavonoid, accelerates TNF-alpha-induced growth inhibition and apoptosis in MC3T3-E1 osteoblastic cells. Eur J Pharmacol 529:24–32PubMedCrossRef
Stoch SA, Zajic S, Stone J, Miller DL, Van Dick K, Gutierrez MJ (2009) Effect of the cathepsin K inhibitor odanacatib on bone resorption biomarkers in healthly postmenopausal women: two double blind, randomized, placebo-controlled phase I studies. Clin Pharmacol Ther 86:175–182PubMedCrossRef
Sun G, Guo T, Chen Y, Xu B, Guo JH, Zhao J (2013) Significant pathways detection in osteoporosis based on the bibliometric network. Eur Rev Med Pharmacol Sci 17:1–7PubMed
Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A (2007) Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet 370:657–666PubMedCrossRef
Taranta A, Brama M, Teti A, De luca V, Scandurra R, Spera G, Agnusdei D, Termine JD, Migliaccio S (2002) The selective estrogen receptor modulator raloxifene regulates osteoclast and osteoblast activity in vitro. Bone 30:368–376
Taxel P, Kenny A (2000) Differential diagnosis and secondary causes of osteoporosis. Clin Cornerstone 2:11–21PubMedCrossRef
Trivedi R, Mithal A, Chattopadhyay N (2008) Recent updates on the calcium-sensing receptor as a drug target. Curr Med Chem 15:178–186PubMedCrossRef
Van Bezooijen R, Ten Dijke P, Papapoulos S, Lowik C (2005) SOST/sclerostin, an osteocytederived negative regulator of bone formation. Cytokine Growth Factor Rev 16:319–327PubMedCrossRef
Van der Lee MM, Verkaar F, Wat JW, van Offenbeek J, Timmerman M, Voorneveld L, van Lith LH, Zaman GJ (2013) Beta-arrestin-biased signaling of PTH analogs of the type 1 parathyroid hormone receptor. Cell Signal 25:527–538PubMedCrossRef
Vilardaga JP, Romero G, Friedman PA, Gardella TJ (2011) Molecular basis of parathyroid eceptor signaling and trafficking: a family B GPCR paradigm. Cell Mol Life Sci 68:1–13PubMedCrossRef
Wan Y, Chong LW, Evans RM (2007) PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 13:1496–1503PubMedCrossRef
Wang FS, Lin CL, Chen YJ, Wang CJ, Yang KD, Huang YT, Sun YC, Huang HC (2005) Secreted frizzled-related protein 1 modulates glucocorticoid attenuation of osteogenic activities and bone mass. Endocrinology 146:2415–2423PubMedCrossRef
Wang Y, Liu Y, Rowe D (2007) Effects of transient PTH on early proliferation, apoptosis, and subsequent differentiation of osteoblast in primary osteoblast cultures. Am J Physiol Endocrinol Metab 292:E594–E603PubMedCrossRef
Wang FS, Ko JY, Weng LH, Yeh DW, Ke HJ, Wu SL (2009) Inhibition of glycogen synthase kinase 3β attenuates glucocorticoid induced bone loss. Life Sci 85:685–692PubMedCrossRef
Wang XH, Schröder HC, Wiens M, Ushijima H, Müller WEG (2012) Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation). Curr Opin Biotechnol 23:570–578PubMedCrossRef
Wang XH, Schröder HC, Diehl-Seifert B, Kropf K, Schlossmacher U, Wiens M, Müller WEG (2013) Dual effect of inorganic polymeric phosphate/polyphosphate on osteoblasts and osteoclasts in vitro. J Tissue Engin Regen Med 7:767–776
Wang XH, Schröder HC, Grebenjuk V, Diehl-Seifert B, Mailänder V, Steffen R, Schloßmacher U, Müller WEG (2014a) The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis. Mar Drugs 12:1131–1147PubMedPubMedCentralCrossRef
Wang XH, Schröder HC, Müller WEG (2014b) Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine. Int Rev Cell Mol Biol 313:27–77PubMedCrossRef
Wang XH, Schröder HC, Feng Q, Diehl-Seifert B, Grebenjuk VA, Müller WEG (2014c) Isoquercitrin and polyphosphate co-enhance mineralization of human osteoblast-like SaOS-2 cells via separate activation of two RUNX2 cofactors AFT6 and Ets1. Biochem Pharmacol 89:413–421PubMedCrossRef
Wang XH, Schröder HC, Schlossmacher U, Neufurth M, Feng Q, Diehl-Seifert B, Müller WEG (2014d) Modulation of the initial mineralization process of SaOS-2 cells by carbonic anhydrase activators and polyphosphate. Calcif Tissue Int 94:495–509PubMedCrossRef
Wang XH, Huang J, Wang K, Neufurth M, Schröder HC, Wang SF, Müller WEG (2016a) The morphogenetically active polymer, inorganic polyphosphate complexed with GdCl3, as an inducer of hydroxyapatite formation in vitro. Biochem Pharmacol 102:97–106PubMedCrossRef
Wang XH, Schröder HC, Müller WEG (2016b) Polyphosphate as a metabolic fuel in Metazoa: a foundational breakthrough invention for biomedical applications. Biotechnol J 11:11–30PubMedCrossRef
Wattel A, Kamel S, Mentaverri R, Lorget F, Prouillet C, Petit JP, Fardelonne P, Brazier M (2003) Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol 65:35–42PubMedCrossRef
Wei W, Wang X, Yang M, Smith LC, Dechow PC, Sonoda J, Evans RM, Wan Y (2010) PGC1β mediates PPARγ activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab 11:503–516PubMedPubMedCentralCrossRef
Whitfield J (2006) Osteoporosis-treating parathyroid hormone peptides: What are they? What do they do? How might they do it? Curr Opin Investig Drugs 7:349–359PubMed
Wiens M, Belikov SI, Kaluzhnaya OV, Adell T, Schröder HC, Perovic-Ottstadt S, Kaandorp JA, Müller WEG (2008) Regional and modular expression of morphogenetic factors in the demosponge Lubomirskia baicalensis. Micron 39:447–460PubMedCrossRef
Wiens M, Wang XH, Schloßmacher U, Lieberwirth I, Glasser G, Ushijima H, Schröder HC, Müller WEG (2010a) Osteogenic potential of bio-silica on human osteoblast-like (SaOS-2) cells. Calcif Tissue Intern 87:513–524CrossRef
Wiens M, Wang XH, Schröder HC, Kolb U, Schloßmacher U, Ushijima H, Müller WEG (2010b) The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. Biomaterials 31:7716–7725PubMedCrossRef
Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22:6267–6276PubMedPubMedCentralCrossRef
Woo JT, Nakagawa H, Notoya M, Yonezawa T, Udagawa N, Lee IS, Ohnishi M, Hagiwara H, Nagai K (2004) Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol Pharm Bull 27:504–509PubMedCrossRef
Xue Y, Xiao Y, Liu J, Karaplis AC, Pollak MR, Brown EM, Miao D, Goltzman D (2012) The calcium-sensing receptor complements parathyroid hormone-induced bone turnover in discrete skeletal compartments in mice. Am J Physiol Endocrinol Metab 302:E841–E851PubMedPubMedCentralCrossRef
Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD (2007) Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 109:2106–2111PubMedPubMedCentralCrossRef
Zakharian E, Thyagarajan B, French RJ, Pavlov E, Rohacs T (2009) Inorganic polyphosphate modulates TRPM8 channels. PLoS ONE 4:e5404. doi:10.​1371/​journal.​pone.​0005404 PubMedPubMedCentralCrossRef
Zerbini CA, McClung MR (2013) Odanacatib in postmenopausal women with low bone mineral density: a review of current clinical evidence. Ther Adv Musculoskelet Dis 5:199–209PubMedPubMedCentralCrossRef
Zhang S, Xiao Z, Luo J, He N, Mahlios J, Quarles LD (2009) Dose-dependent effects of Runx2 on bone development. J Bone Miner Res 24:1889–1904PubMedPubMedCentralCrossRef