Skip to main content
Top

29-11-2016 | Rheumatoid arthritis | Article

Abdominal obesity, gender and the risk of rheumatoid arthritis – a nested case–control study

Journal: Arthritis Research & Therapy

Authors: Lotta Ljung, Solbritt Rantapää-Dahlqvist

Publisher: BioMed Central

Abstract

Background

The risk of development of rheumatoid arthritis (RA) could be affected by immune activation in obesity. Our objective was to evaluate the association between obesity in general, and abdominal obesity, and the risk for subsequent development of RA.

Methods

In two large population-based, prospective cohorts, 557 cases (mean age at RA symptom onset 58, SD 10 years, 68% women) who subsequently developed RA and 1671 matched controls were identified. From a health examination antedating symptom onset (median 5.5 years), collected data on body mass index (BMI; kg/m2), smoking habits, and educational level was used in conditional logistical regression models. Corresponding regression models were used to analyse the association between waist circumference measurements (cm) and RA development in a subset of the population.

Results

BMI and waist circumference were associated with the risk of RA development, adjusted odds ratio (OR) (95% CI), 1.13 (1.00, 1.28) per 5 kg/m2, and 1.02 (1.01, 1.04) per cm, respectively. An association was also observed for obesity (BMI ≥30) OR 1.45 (1.07, 1.95), compared with BMI <25. After stratification for sex the associations were enhanced in men, and attenuated in women. Among men with BMI above normal a 3–5 times increased risk for RA disease development at 50 years of age or earlier was observed. Abdominal obesity with waist circumference >102 cm was associated with a 2–3 times increased risk of RA, but not abdominal obesity (>88 cm) in women.

Conclusions

Obesity or abdominal obesity, respectively, was independently associated with a modest increase of the risk for subsequent development of RA. This appeared to be relevant mainly for early RA disease onset among men.
Literature
1.
Rantapää-Dahlqvist S, de Jong BA, Berglin E, Hallmans G, Wadell G, Stenlund H, Sundin U, van Venrooij WJ. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 2003;48:2741–9.CrossRefPubMed
2.
Kokkonen H, Söderström I, Rocklöv J, Hallmans G, Lejon K, Rantapää DS. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum. 2010;62:383–91.PubMed
3.
Frisell T, Holmqvist M, Kallberg H, Klareskog L, Alfredsson L, Askling J. Familial risks and heritability of rheumatoid arthritis: role of rheumatoid factor/anti-citrullinated protein antibody status, number and type of affected relatives, sex, and age. Arthritis Rheum. 2013;65:2773–82.CrossRefPubMed
4.
Sugiyama D, Nishimura K, Tamaki K, Tsuji G, Nakazawa T, Morinobu A, Kumagai S. Impact of smoking as a risk factor for developing rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis. 2010;69:70–81.CrossRefPubMed
5.
Bingham 3rd CO, Moni M. Periodontal disease and rheumatoid arthritis: the evidence accumulates for complex pathobiologic interactions. Curr Opin Rheumatol. 2013;25:345–53.CrossRefPubMedPubMedCentral
6.
Lu B, Hiraki LT, Sparks JA, Malspeis S, Chen CY, Awosogba JA, Arkema EV, Costenbader KH, Karlson EW. Being overweight or obese and risk of developing rheumatoid arthritis among women: a prospective cohort study. Ann Rheum Dis. 2014;73:1914–22.CrossRefPubMedPubMedCentral
7.
Turesson C, Bergstrom U, Pikwer M, Nilsson JA, Jacobsson LT. A high body mass index is associated with reduced risk of rheumatoid arthritis in men, but not in women. Rheumatology. 2016;55:307–14.CrossRefPubMed
8.
Pedersen M, Jacobsen S, Klarlund M, Pedersen BV, Wiik A, Wohlfahrt J, Frisch M. Environmental risk factors differ between rheumatoid arthritis with and without auto-antibodies against cyclic citrullinated peptides. Arthritis Care Res (Hoboken). 2006;8:R133.
9.
Crowson CS, Matteson EL, 3rd Davis JM, Gabriel SE. Contribution of obesity to the rise in incidence of rheumatoid arthritis. Arthritis Care Res (Hoboken). 2013;65:71–7.CrossRef
10.
Voigt LF, Koepsell TD, Nelson JL, Dugowson CE, Daling JR. Smoking, obesity, alcohol consumption, and the risk of rheumatoid arthritis. Epidemiology. 1994;5:525–32.PubMed
11.
Symmons DP, Bankhead CR, Harrison BJ, Brennan P, Barrett EM, Scott DG, Silman AJ. Blood transfusion, smoking, and obesity as risk factors for the development of rheumatoid arthritis: results from a primary care-based incident case–control study in Norfolk. England Arthritis Rheum. 1997;40:1955–61.CrossRefPubMed
12.
Uhlig T, Hagen KB, Kvien TK. Current tobacco smoking, formal education, and the risk of rheumatoid arthritis. J Rheumatol. 1999;26:47–54.PubMed
13.
Cerhan JR, Saag KG, Criswell LA, Merlino LA, Mikuls TR. Blood transfusion, alcohol use, and anthropometric risk factors for rheumatoid arthritis in older women. J Rheumatol. 2002;29:246–54.PubMed
14.
Rodriguez LA, Tolosa LB, Ruigomez A, Johansson S, Wallander MA. Rheumatoid arthritis in UK primary care: incidence and prior morbidity. Scand J Rheum. 2009;38:173–7.CrossRefPubMed
15.
Wesley A, Bengtsson C, Elkan AC, Klareskog L, Alfredsson L, Wedren S, Wesley A, Bengtsson C, Elkan AC, Klareskog L, Alfredsson L, Wedren S. Epidemiological Investigation of Rheumatoid Arthritis Study G. Association between body mass index and anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis: results from a population-based case–control study. Arthritis Care Res (Hoboken). 2013;65:107–12.CrossRef
16.
Harpsoe MC, Basit S, Andersson M, Nielsen NM, Frisch M, Wohlfahrt J, Nohr EA, Linneberg A, Jess T. Body mass index and risk of autoimmune diseases: a study within the Danish National Birth Cohort. Int J Epidemiol. 2014;43:843–55.CrossRefPubMed
17.
Qin B, Yang M, Fu H, Ma N, Wei T, Tang Q, Hu Z, Liang Y, Yang Z, Zhong R. Body mass index and the risk of rheumatoid arthritis: a systematic review and dose–response meta-analysis. Arthritis Res Ther. 2015;17:86.CrossRefPubMedPubMedCentral
18.
Phillips GB, Jing T, Heymsfield SB. Relationships in men of sex hormones, insulin, adiposity, and risk factors for myocardial infarction. Metabolism. 2003;52:784–90.CrossRefPubMed
19.
Porter SA, Massaro JM, Hoffmann U, Vasan RS, O'Donnel CJ, Fox CS. Abdominal subcutaneous adipose tissue: a protective fat depot? Diabetes Care. 2009;32:1068–75.CrossRefPubMedPubMedCentral
20.
Giles JT, Allison M, Blumenthal RS, Post W, Gelber AC, Petri M, Tracy R, Szklo M, Bathon JM. Abdominal adiposity in rheumatoid arthritis: association with cardiometabolic risk factors and disease characteristics. Arthritis Rheum. 2010;62:3173–82.CrossRefPubMedPubMedCentral
21.
Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015;402:113–9.CrossRefPubMed
22.
Norberg M, Wall S, Boman K, Weinehall L. The Vasterbotten Intervention Programme: background, design and implications. Glob Health Action. 2010;3.
23.
Stegmayr B, Lundberg V, Asplund K. The events registration and survey procedures in the Northern Sweden MONICA Project. Scand J Public Health Suppl. 2003;61:9–17.CrossRefPubMed
24.
Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–24.CrossRefPubMed
25.
Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Executive summary of the third report of The National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.CrossRef
26.
Zou GY. On the estimation of additive interaction by use of the four-by-two table and beyond. Am J Epidemiol. 2008;168:212–24.CrossRefPubMed
27.
Tengstrand B, Ahlmén M, Hafström I. The influence of sex on rheumatoid arthritis: a prospective study of onset and outcome after 2 years. J Rheumatol. 2004;31:214–22.PubMed