Skip to main content
Top

06-09-2018 | Calcium crystal deposition disease | Review | Article

Calcium crystal deposition diseases — beyond gout

Journal: Nature Reviews Rheumatology

Authors: Geraldine M. McCarthy, Aisling Dunne

Publisher: Nature Publishing Group UK

Abstract

The most common types of calcium-containing crystals that are associated with joint and periarticular disorders are calcium pyrophosphate dihydrate (CPP) and basic calcium phosphate (BCP) crystals. Several diverse but difficult-to-treat acute and chronic arthropathies and other clinical syndromes are associated with the deposition of these crystals. Although the pathogenic mechanism of calcium crystal deposition is partially understood, much remains to be investigated, as no drug is available to prevent crystal deposition, permit crystal dissolution or specifically target the pathogenic effects that result in the clinical manifestations. In this Review, the main clinical manifestations of CPP and BCP crystal deposition are discussed, along with the biological effects of these crystals, current therapeutic approaches and future directions in therapy.
Glossary
Chondrocalcinosis
Calcification of articular fibrocartilage or hyaline cartilage, most commonly owing to calcium pyrophosphate dihydrate crystal deposition.
Hypophosphatasia
A rare genetic disorder characterized by defective mineralization of bone and/or teeth caused by a deficiency of serum and bone alkaline phosphatase.
Gitelman variant of Bartter syndrome
A genetic renal disorder characterized by hypokalaemic alkalosis (low serum potassium levels) caused by inactivating mutations in a gene encoding a thiazide-sensitive sodium–chloride cotransporter (SLC12A3).
Birefringent
A state that enables a material of ordered structure to split a single ray of unpolarized light into two rays; the colour of the birefringent material changes as its orientation changes in relation to the light source.
Acetabular labrum
A ring of fibrous cartilage that surrounds the acetabulum (cup) of the hip joint.
Symphysis pubis
A cartilaginous joint located between the left and right pubic bones.
Annulus fibrosus
The outer layer of the intervertebral disc composed of strong layers of collagen fibres that surrounds the soft inner core of the disc.
Calciphylaxis
A rare and potentially fatal disease cause by the accumulation of calcium in small blood vessels of the fat and skin.
Crepitus
A medical term used to describe the cracking or popping sensation or sound that occurs when moving a joint; it is caused by the presence of air in the subcutaneous tissue.
Barbotage
Needle aspiration and lavage; it is used in the treatment of calcific tendinitis.
Literature
1.
Rosenthal, A. K. & Ryan, L. M. Calcium pyrophosphate deposition disease. N. Engl. J. Med. 374, 2575–2584 (2016).PubMed
2.
Stack, J. & McCarthy, G. Basic calcium phosphate crystals and osteoarthritis pathogenesis: novel pathways and potential targets. Curr. Opin. Rheumatol. 28, 122–126 (2016).PubMed
3.
Morgan, M. P., Cooke, M. M. & McCarthy, G. M. Microcalcifications associated with breast cancer: an epiphenomenon or biologically significant feature of selected tumors? J. Mammary Gland Biol. Neoplasia 10, 181–187 (2005).PubMed
4.
Durcan, L., Bolster, F., Kavanagh, E. C. & McCarthy, G. M. The structural consequences of calcium crystal deposition. Rheum. Dis. Clin. North Am. 40, 311–328 (2014).PubMed
5.
Mitton-Fitzgerald, E., Gohr, C. M., Bettendorf, B. & Rosenthal, A. K. The role of ANK in calcium pyrophosphate deposition disease. Curr. Rheumatol. Rep. 18, 25 (2016).PubMedPubMedCentral
6.
MacMullan, P. & McCarthy, G. Treatment and management of pseudogout: insights for the clinician. Ther. Adv. Musculoskelet. Dis. 4, 121–131 (2012).PubMedPubMedCentral
7.
Malik, A., Schumacher, H. R., Dinnella, J. E. & Clayburne, G. M. Clinical diagnostic criteria for gout: comparison with the gold standard of synovial fluid crystal analysis. J. Clin. Rheumatol. 15, 22–24 (2009).PubMed
8.
Wilkins, E., Dieppe, P., Maddison, P. & Evison, G. Osteoarthritis and articular chondrocalcinosis in the elderly. Ann. Rheum. Dis. 42, 280–284 (1983).PubMedPubMedCentral
9.
Richette, P., Bardin, T. & Doherty, M. An update on the epidemiology of calcium pyrophosphate dihydrate crystal deposition disease. Rheumatology 48, 711–715 (2009).PubMed
10.
Neame, R., Carr, A., Muir, K. & Doherty, M. UK community prevalence of knee chondrocalcinosis: evidence that correlation with osteoarthritis is through a shared association with osteophyte. Ann. Rheum. Dis. 62, 513–518 (2003).PubMedPubMedCentral
11.
Abhishek, A. Calcium pyrophosphate deposition disease: a review of epidemiologic findings. Curr. Opin. Rheumatol. 28, 133–139 (2016).PubMed
12.
Doherty, M. & Dieppe, P. A. Pyrophosphate arthropathy as a late complication of juvenile chronic arthritis. J. Rheumatol. 11, 219–221 (1984).PubMed
13.
Doherty, M., Watt, I. & Dieppe, P. A. Localised chondrocalcinosis in post-meniscectomy knees. Lancet 319, 1207–1210 (1982).
14.
Abhishek, A. et al. Evidence of a systemic predisposition to chondrocalcinosis and association between chondrocalcinosis and osteoarthritis at distant joints: a cross-sectional study. Arthritis Care Res. 65, 1052–1058 (2013).
15.
Chuck, A. J., Pattrick, M. G., Hamilton, E., Wilson, R. & Doherty, M. Crystal deposition in hypophosphatasia: a reappraisal. Ann. Rheum. Dis. 48, 571–576 (1989).PubMedPubMedCentral
16.
Pawlotsky, Y. et al. Elevated parathyroid hormone 44–68 and osteoarticular changes in patients with genetic hemochromatosis. Arthritis Rheum. 42, 799–806 (1999).PubMed
17.
Ea, H. K., Blanchard, A., Dougados, M. & Roux, C. Chondrocalcinosis secondary to hypomagnesemia in Gitelman’s syndrome. J. Rheumatol. 32, 1840–1842 (2005).PubMed
18.
Williams, C. J. et al. Mutations in the amino terminus of ANKH in two US families with calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum. 48, 2627–2631 (2003).PubMed
19.
Ramos, Y. F. M. et al. A gain of function mutation in TNFRSF11B encoding osteoprotegerin causes osteoarthritis with chondrocalcinosis. Ann. Rheum. Dis. 74, 1756–1762 (2015).PubMed
20.
Williams, C. J. et al. Mutations in osteoprotegerin account for the CCAL1 locus in calcium pyrophosphate deposition disease. Osteoarthritis Cartilage 26, 797–806 (2018).PubMed
21.
Dieppe, P. A. et al. Pyrophosphate arthropathy: a clinical and radiological study of 105 cases. Ann. Rheum. Dis. 41, 371–376 (1982).PubMedPubMedCentral
22.
Ryan, L. M. & McCarty D. J. in Arthritis and Allied conditions: A Textbook of Rheumatology (eds McCarty, D. J. & Koopman, W. J.) 1835–1855 (Lea and Febiger, 1993).
23.
Matsumura, M. & Hara, S. Crowned dens syndrome. N. Engl. J. Med. 367, e34 (2012).PubMed
24.
Grassi, W., Meenagh, G., Pascual, E. & Filippucci, E. “Crystal clear” — sonographic assessment of gout and calcium pyrophosphate deposition disease. Semin. Arthritis Rheum. 36, 197–202 (2006).PubMed
25.
Inoue, A. et al. Usefulness of cervical computed tomography and magnetic resonance imaging for rapid diagnosis of crowned dens syndrome: a case report and review of the literature. Int. J. Surg. Case Rep. 30, 50–54 (2018).
26.
Stack, J. & McCarthy, G. M. in Rheumatology 7th edn (eds Hochberg, M.C. et al.) 1632–1638 (Elsevier, London, UK, 2018).
27.
Fuerst, M. et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum. 60, 2694–2703 (2009).PubMed
28.
Halverson, P. B. & McCarty, D. J. Patterns of radiographic abnormalities associated with basic calcium phosphate and calcium pyrophosphate dihydrate crystal deposition in the knee. Ann. Rheum. Dis. 45, 603–605 (1986).PubMedPubMedCentral
29.
Ea, H.-K. et al. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PLOS ONE 8, e57352 (2013).PubMedPubMedCentral
30.
Doumas, C., Vazirani, R. M., Clifford, P. D. & Owens, P. Acute calcific periarthritis of the hand and wrist: a series and review of the literature. Emerg. Radiol. 14, 199–203 (2007).PubMed
31.
McCarthy, G. M., Carrera, G. F. & Ryan, L. M. Acute calcific periarthritis of the finger joints: a syndrome of women. J. Rheumatol. 20, 1077–1080 (1993).PubMed
32.
Rosenthal, A. K. Basic calcium phosphate crystal-associated musculoskeletal syndromes: an update. Curr. Opin. Rheumatol. 30, 168–172 (2018).PubMed
33.
Dieppe, P. A. et al. Apatite associated destructive arthritis. Rheumatology 23, 84–91 (1984).
34.
Mccarty, D. J., Halverson, P. B., Carrera, G. F., Brewer, B. J. & Kozin, F. “Milwaukee shoulder” — association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. I. Clinical aspects. Arthritis Rheum. 24, 464–473 (1981).PubMed
35.
MacMullan, P., McMahon, G. & McCarthy, G. Detection of basic calcium phosphate crystals in osteoarthritis. Joint Bone Spine 78, 358–363 (2011).
36.
Ottaviani, S. et al. Efficacy of anakinra in calcium pyrophosphate crystal-induced arthritis: a report of 16 cases and review of the literature. Joint Bone Spine 80, 178–182 (2013).PubMed
37.
Sivera, F., Andrés, M. & Pascual, E. Current advances in therapies for calcium pyrophosphate crystal arthritis. Curr. Opin. Rheumatol. 28, 140–144 (2016).PubMed
38.
Chollet-Janin, A., Finckh, A., Dudler, J. & Guerne, P.-A. Methotrexate as an alternative therapy for chronic calcium pyrophosphate deposition disease: an exploratory analysis. Arthritis Rheum. 56, 688–692 (2007).PubMed
39.
Finckh, A. et al. Methotrexate in chronic-recurrent calcium pyrophosphate deposition disease: no significant effect in a randomized crossover trial. Arthritis Res. Ther. 16, 458 (2014).PubMedPubMedCentral
40.
Andrés, M., Sivera, F. & Pascual, E. Therapy for CPPD: options and evidence. Curr. Rheumatol. Rep. 20, 31 (2018).PubMed
41.
Ebenbichler, G. R. et al. Ultrasound therapy for calcific tendinitis of the shoulder. N. Engl. J. Med. 340, 1533–1538 (1999).PubMed
42.
Angelo, C. et al. Effectiveness of treatment of calcific tendinitis of the shoulder by disodium EDTA. Arthritis Care Res. 61, 84–91 (2008).
43.
Park, S. M. et al. Management of acute calcific tendinitis around the hip joint. Am. J. Sports Med. 42, 2659–2665 (2014).PubMed
44.
Frassanito, P., Cavalieri, C., Maestri, R. & Felicetti, G. Effectiveness of extracorporeal shock wave therapy and kinesio taping in calcific tendinopathy of the shoulder: a randomized controlled trial. Eur. J. Phys. Rehabil. Med. 54, 333–340 (2018).PubMed
45.
Petrillo, S., Longo, U. G., Papalia, R. & Denaro, V. Reverse shoulder arthroplasty for massive irreparable rotator cuff tears and cuff tear arthropathy: a systematic review. Musculoskelet. Surg. 101, 105–112 (2017).PubMed
46.
Liu, Y. Z., Jackson, A. P. & Cosgrove, S. D. Contribution of calcium-containing crystals to cartilage degradation and synovial inflammation in osteoarthritis. Osteoarthritis Cartilage 17, 1333–1340 (2009).PubMed
47.
Liu-Bryan, R. & Lioté, F. Monosodium urate and calcium pyrophosphate dihydrate (CPPD) crystals, inflammation, and cellular signaling. Joint Bone Spine 72, 295–302 (2005).PubMed
48.
Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237 (2006).
49.
Place, D. E. & Kanneganti, T. D. Recent advances in inflammasome biology. Curr. Opin. Immunol. 50, 32–38 (2018).PubMed
50.
Malik, A. & Kanneganti, T. D. Inflammasome activation and assembly at a glance. J. Cell Sci. 130, 3955–3963 (2017).PubMed
51.
Schett, G., Dayer, J. M. & Manger, B. Interleukin-1 function and role in rheumatic disease. Nat. Rev. Rheumatol. 12, 14–24 (2015).PubMed
52.
Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).PubMedPubMedCentral
53.
Netea, M. G. et al. IL-1β processing in host defense: beyond the inflammasomes. PLOS Pathog. 6, e1000661 (2010).PubMedPubMedCentral
54.
Mulay, S. R. et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat. Commun. 7, 10274 (2016).PubMedPubMedCentral
55.
Desai, J. et al. Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin. Sci. Rep. 7, 15003 (2017).PubMedPubMedCentral
56.
Garg, A. D. et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front. Immunol. 6, 588 (2015).PubMedPubMedCentral
57.
Desai, J., Mulay, S. R., Nakazawa, D. & Anders, H. J. Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? Cell. Mol. Life Sci. 73, 2211–2219 (2016).PubMed
58.
Delgado-Rizo, V. et al. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front. Immunol. 8, 81 (2017).PubMedPubMedCentral
59.
Williams, C. J. The role of ANKH in pathologic mineralization of cartilage. Curr. Opin. Rheumatol. 28, 145–151 (2016).PubMed
60.
Uzuki, M., Sawai, T., Ryan, L. M., Rosenthal, A. K. & Masuda, I. Upregulation of ANK protein expression in joint tissue in calcium pyrophosphate dihydrate crystal deposition disease. J. Rheumatol. 41, 65–74 (2014).PubMed
61.
Rosenthal, A. K. et al. The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes. Arthritis Res. Ther. 15, R154 (2013).PubMedPubMedCentral
62.
US National Library of Medicine. ClinicalTrials.gov https://​clinicaltrials.​gov/​ct2/​show/​NCT02243631 (2018).
63.
Conway, R. & McCarthy, G. M. Calcium-containing crystals and osteoarthritis: an unhealthy alliance. Curr. Rheumatol. Rep. 20, 13 (2018).PubMed
64.
McCarthy, G. M. et al. Basic calcium phosphate crystals activate human osteoarthritic synovial fibroblasts and induce matrix metalloproteinase-13 (collagenase-3) in adult porcine articular chondrocytes. Ann. Rheum. Dis. 60, 399–406 (2001).PubMedPubMedCentral
65.
Bai, G., Howell, D. S., Howard, G. A., Roos, B. A. & Cheung, H. S. Basic calcium phosphate crystals up-regulate metalloproteinases but down-regulate tissue inhibitor of metalloproteinase-1 and -2 in human fibroblasts. Osteoarthritis Cartilage 9, 416–422 (2001).PubMed
66.
Morgan, M. P. et al. Basic calcium phosphate crystal–induced prostaglandin E2 production in human fibroblasts: role of cyclooxygenase 1, cyclooxygenase 2, and interleukin-1β. Arthritis Rheum. 50, 1642–1649 (2004).PubMed
67.
Nadra, I. et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways. Circ. Res. 96, 1248–1256 (2005).PubMed
68.
Jin, C. et al. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc. Natl Acad. Sci. USA 108, 14867–14872 (2011).PubMed
69.
Pazár, B. et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. J. Immunol. 186, 2495–2502 (2011).PubMed
70.
Cunningham, C. C. et al. Osteoarthritis-associated basic calcium phosphate crystals induce pro-inflammatory cytokines and damage-associated molecules via activation of Syk and PI3 kinase. Clin. Immunol. 144, 228–236 (2012).PubMed
71.
Nasi, S., So, A., Combes, C., Daudon, M. & Busso, N. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis. Ann. Rheum. Dis. 75, 1372–1379 (2016).PubMed
72.
van der Kraan, P. M. & van den Berg, W. B. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage 20, 223–232 (2012).PubMed
73.
Thouverey, C., Bechkoff, G., Pikula, S. & Buchet, R. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage 17, 64–72 (2009).PubMed
74.
Gurley, K. A. et al. Mineral formation in joints caused by complete or joint-specific loss of ANK function. J. Bone Miner. Res. 21, 1238–1247 (2006).PubMed
75.
Nasi, S., Ea, H. K., So, A. & Busso, N. Revisiting the role of interleukin-1 pathway in osteoarthritis: interleukin-1α and -1β, and NLRP3 inflammasome are not involved in the pathological features of the murine menisectomy model of osteoarthritis. Front. Pharmacol. 8, 282 (2017).PubMedPubMedCentral
76.
Jotanovic, Z., Mihelic, R., Sestan, B. & Dembic, Z. Role of interleukin-1 inhibitors in osteoarthritis. Drugs Aging 29, 343–358 (2012).PubMed
77.
Corr, E. M., Cunningham, C. C., Helbert, L., McCarthy, G. M. & Dunne, A. Osteoarthritis-associated basic calcium phosphate crystals activate membrane proximal kinases in human innate immune cells. Arthritis Res. Ther. 19, 23 (2017).PubMedPubMedCentral
78.
Shi, Y. To forge a solid immune recognition. Protein Cell 3, 564–570 (2012).PubMedPubMedCentral
79.
Yan, S., D., M. A. & Gilbert, N. Monosodium urate crystals in inflammation and immunity. Immunol. Rev. 233, 203–217 (2009).
80.
Ng, G. et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29, 807–818 (2008).PubMedPubMedCentral
81.
Corr, E. M., Cunningham, C. C. & Dunne, A. Cholesterol crystals activate Syk and PI3 kinase in human macrophages and dendritic cells. Atherosclerosis 251, 197–205 (2016).PubMed
82.
Van Lent, P. L. E. M. et al. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum. 64, 1466–1476 (2012).PubMed
83.
Schelbergen, R. F. P. et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 64, 1477–1487 (2012).PubMed
84.
Austermann, J., Zenker, S. & Roth, J. S100-alarmins: potential therapeutic targets for arthritis. Expert Opin. Ther. Targets 21, 738–750 (2017).
85.
van den Bosch, M. H. et al. Alarmin S100A9 induces proinflammatory and catabolic effects predominantly in the M1 macrophages of human osteoarthritic synovium. J. Rheumatol. 43, 1874–1884 (2016).PubMed
86.
Rosenberg, J. H., Rai, V., Dilisio, M. F. & Agrawal, D. K. Damage-associated molecular patterns in the pathogenesis of osteoarthritis: potentially novel therapeutic targets. Mol. Cell. Biochem. 434, 171–179 (2017).PubMedPubMedCentral
87.
Sunahori, K. et al. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res. Ther. 8, R69 (2006).PubMedPubMedCentral
88.
Je-Hwang, R. et al. Interleukin-6 plays an essential role in hypoxia-inducible factor 2α–induced experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 63, 2732–2743 (2011).
89.
Chang, C.-C., Tsai, Y.-H., Liu, Y., Lin, S.-Y. & Liang, Y.-C. Calcium-containing crystals enhance receptor activator of nuclear factor κB ligand/macrophage colony-stimulating factor–mediated osteoclastogenesis via extracellular-signal-regulated kinase and p38 pathways. Rheumatology 54, 1913–1922 (2015).PubMed
90.
Cunningham, C. C., Corr, E. M., McCarthy, G. M. & Dunne, A. Intra-articular basic calcium phosphate and monosodium urate crystals inhibit anti-osteoclastogenic cytokine signalling. Osteoarthritis Cartilage 24, 2141–2152 (2016).PubMed
91.
Cheung, H. S., Sallis, J. D. & Struve, J. A. Specific inhibition of basic calcium phosphate and calcium pyrophosphate crystal-induction of metalloproteinase synthesis by phosphocitrate. Biochim. Biophys. Acta 1315, 105–111 (1996).PubMed
92.
Nair, D., Misra, R. P., Sallis, J. D. & Cheung, H. S. Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway. J. Biol. Chem. 272, 18920–18925 (1997).PubMed
93.
Sun, Y., Franklin, A. M., Mauerhan, D. R. & Hanley, E. N. Biological effects of phosphocitrate on osteoarthritic articular chondrocytes. Open Rheumatol. J. 11, 62–74 (2017).PubMedPubMedCentral
94.
Cheung, H. S., Sallis, J. D., Demadis, K. D. & Wierzbicki, A. Phosphocitrate blocks calcification-induced articular joint degeneration in a guinea pig model. Arthritis Rheum. 54, 2452–2461 (2006).PubMed
95.
Sun, Y. et al. Disease-modifying effects of phosphocitrate and phosphocitrate-β-ethyl ester on partial meniscectomy-induced osteoarthritis. BMC Musculoskelet. Disord. 16, 270 (2015).PubMedPubMedCentral
96.
Nasi, S., Ea, H.-K., Lioté, F., So, A. & Busso, N. Sodium thiosulfate prevents chondrocyte mineralization and reduces the severity of murine osteoarthritis. PLOS ONE 11, e0158196 (2016).PubMedPubMedCentral