Skip to main content
Top

24-05-2018 | Vitamin D | Article

Vitamin D level and risk of systemic lupus erythematosus and rheumatoid arthritis: a Mendelian randomization

Journal: Clinical Rheumatology

Authors: Sang-Cheol Bae, Young Ho Lee

Publisher: Springer London

Abstract

The aim of this study was to examine whether the vitamin D level is causally associated with risk of systemic lupus erythematosus (SLE) or rheumatoid arthritis (RA). We performed two-sample Mendelian randomization (MR) analyses using the inverse-variance weighted (IVW), weighted median, and MR-Egger regression methods on publicly available summary statistics datasets using two vitamin D level genome-wide association studies (GWASs) as exposure and SLE and RA GWASs on people of European descent as outcomes. We selected three independent single-nucleotide polymorphisms located at SSTR4 (rs2207173), GC (rs2282679), and NADSYN1 (3829251) with genome-wide significance from two GWASs on vitamin D levels as instrumental variables. The IVW, weighted median, and MR-Egger regression methods yielded no evidence of a causal association between vitamin D level and risk of SLE (beta = 0.032, SE = 0.119, p = 0.789; beta = 0.233, SE = 0.274, p = 0.552; beta = 0.054, SE = 0.125, p = 0.665; respectively) or RA (beta = 0.026, SE = 0.061, p = 0.664; beta = 0.025, SE = 0.065, p = 0.695; beta = 0.025, SE = 0.065, p = 0.695; respectively). In addition, MR-Egger regression revealed directional pleiotropy was unlikely to be biasing the result for SLE (intercept = − 0.058, p = 0.545) or RA (intercept = − 0.027, p = 0.558). The MR estimates from IVW, weighted median, and MR-Egger regression analyses were consistent. MR analysis did not support a causal association between the vitamin D level and SLE or RA.
Literature
1.
Lee YH, Bae S-C, Choi SJ, Ji JD, Song GG (2012) Genome-wide pathway analysis of genome-wide association studies on systemic lupus erythematosus and rheumatoid arthritis. Mol Biol Rep 39:10627–10635CrossRefPubMed
2.
Cantorna MT (2000) Vitamin D and autoimmunity: is vitamin D status an environmental factor affecting autoimmune disease prevalence? Proc Soc Exp Biol Med 223:230–233CrossRefPubMed
3.
Aranow C (2011) Vitamin D and the immune system. J Investig Med 59:881–886CrossRefPubMedPubMedCentral
4.
Cantorna MT, Snyder L, Lin YD, Yang L (2015) Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 7:3011–3021CrossRefPubMedPubMedCentral
5.
Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE (2007) Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol 179:1634–1647CrossRefPubMed
6.
Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O'Garra A (2001) 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol 167:4974–4980CrossRefPubMed
7.
Di Rosa M, Malaguarnera M, Nicoletti F, Malaguarnera L (2011) Vitamin D3: a helpful immuno-modulator. Immunology 134:123–139CrossRefPubMedPubMedCentral
8.
Koizumi T, Nakao Y, Matsui T, Nakagawa T, Matsuda S, Komoriya K, Kanai Y, Fujita T (1985) Effects of corticosteroid and 1,24R-dihydroxy-vitamin D3 administration on lymphoproliferation and autoimmune disease in MRL/MP-lpr/lpr mice. Int Arch Allergy Appl Immunol 77:396–404CrossRefPubMed
9.
Szodoray P, Nakken B, Gaal J, Jonsson R, Szegedi A, Zold E, Szegedi G, Brun JG, Gesztelyi R, Zeher M, Bodolay E (2008) The complex role of vitamin D in autoimmune diseases. Scand J Immunol 68:261–269CrossRefPubMed
10.
Gatenby P, Lucas R, Swaminathan A (2013) Vitamin D deficiency and risk for rheumatic diseases: an update. Curr Opin Rheumatol 25:184–191CrossRefPubMed
11.
Lee Y, Bae S-C (2016) Vitamin D level in rheumatoid arthritis and its correlation with the disease activity: a meta-analysis. Clin Exp Rheumatol 34:827–833PubMed
12.
Song GG, Bae S-C, Lee YH (2012) Association between vitamin D intake and the risk of rheumatoid arthritis: a meta-analysis. Clin Rheumatol 31:1733–1739CrossRefPubMed
13.
Hill HA, Kleinbaum DG (2000) Bias in observational studies. Encyclopedia of Biostatistics 1:94–100
14.
Burgess S, Daniel RM, Butterworth AS, Thompson SG, Consortium E-I (2014) Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol 44:484–495CrossRefPubMedPubMedCentral
15.
Lawlor DA (2016) Commentary: two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol 45:908–915CrossRefPubMedPubMedCentral
16.
Sapkota BR, Hopkins R, Bjonnes A, Ralhan S, Wander GS, Mehra NK, Singh JR, Blackett PR, Saxena R, Sanghera DK (2016) Genome-wide association study of 25 (OH) Vitamin D concentrations in Punjabi Sikhs: results of the Asian Indian diabetic heart study. J Steroid Biochem Mol Biol 158:149–156CrossRefPubMed
17.
Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, Jacobs EJ, Ascherio A, Helzlsouer K, Jacobs KB (2010) Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 19:2739–2745CrossRefPubMedPubMedCentral
18.
Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, Lee AT, Chung SA, Ferreira RC, Pant PK (2008) Association of systemic lupus erythematosus with C8orf13–BLK and ITGAM–ITGAX. N Engl J Med 358:900–909CrossRefPubMed
19.
Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP, Li Y, Kurreeman FA, Zhernakova A, Hinks A (2010) Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 42:508–514CrossRefPubMedPubMedCentral
20.
Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, Hottenga JJ, Fischer K, Esko T, Surakka I (2013) Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 45:422CrossRefPubMedPubMedCentral
21.
Mangino M, Hwang S-J, Spector TD, Hunt SC, Kimura M, Fitzpatrick AL, Christiansen L, Petersen I, Elbers CC, Harris T (2012) Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum Mol Genet 21:5385–5394CrossRefPubMedPubMedCentral
22.
Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665CrossRefPubMedPubMedCentral
23.
Hartwig FP, Davies NM, Hemani G, Davey Smith G (2016) Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol 6:1717–1726CrossRef
24.
Pierce BL, Burgess S (2013) Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol 178:1177–1184CrossRefPubMedPubMedCentral
25.
Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525CrossRefPubMedPubMedCentral
26.
Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32:377–389CrossRefPubMedPubMedCentral
27.
Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40:304–314CrossRefPubMedPubMedCentral
28.
Egger M, Smith GD, Phillips AN (1997) Meta-analysis: principles and procedures. BMJ 315:1533–1537CrossRefPubMedPubMedCentral
29.
Hemani G, Zheng J, Wade K, Elsworth B, Langdon R, Burgess S (2016) MR-Base: a platform for systematic causal inference across the phenome using billions of genetic associations. bioRxiv. Dec 16:78972
30.
Bae S-C, Lee YH (2018) Association between Vitamin D level and/or deficiency, and systemic lupus erythematosus: a meta-analysis. Cell Mol Biol (Noisy-le-Grand, France) 64:7–13CrossRef
31.
Smith GD, Ebrahim S (2008) Mendelian randomization: genetic variants as instruments for strengthening causal inference in observational studies. In: Weinstein M, Vaupel JW, Wachter KW (eds) Biological Surveys. National Research Council (US) Committee on Advances in Collecting and Utilizing Biological Indicators and Genetic Information in Social Science Surveys. National Academies Press, Washington, DC. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK62433/​
32.
VanderWeele TJ, Tchetgen EJT, Cornelis M, Kraft P (2014) Methodological challenges in Mendelian randomization. Epidemiology (Cambridge, Mass) 25:427–435CrossRef
33.
Thompson JR, Minelli C, Bowden J, Del Greco FM, Gill D, Jones EM, Shapland CY, Sheehan NA (2017) Mendelian randomization incorporating uncertainty about pleiotropy. Stat Med 36:4627–4645CrossRefPubMed
34.
Paaby AB, Rockman MV (2013) The many faces of pleiotropy. Trends Genet 29:66–73CrossRefPubMed
35.
Smith GD, Ebrahim S (2004) Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol 33:30–42CrossRefPubMed
36.
Swerdlow DI, Kuchenbaecker KB, Shah S, Sofat R, Holmes MV, White J, Mindell JS, Kivimaki M, Brunner EJ, Whittaker JC (2016) Selecting instruments for Mendelian randomization in the wake of genome-wide association studies. Int J Epidemiol 45:1600–1616CrossRefPubMedPubMedCentral
37.
Burgess S, Dudbridge F, Thompson SG (2016) Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med 35:1880–1906CrossRefPubMed
38.
Burgess S, Thompson SG, Collaboration CCG (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40:755–764CrossRefPubMed