Skip to main content
Top

04-08-2016 | Microbiome | Article

Microbiota and chronic inflammatory arthritis: an interwoven link

Journal: Journal of Translational Medicine

Authors: Andrea Picchianti Diamanti, M. Manuela Rosado, Bruno Laganà, Raffaele D’Amelio

Publisher: BioMed Central

Abstract

Background

Only recently, the scientific community gained insights on the importance of the intestinal resident flora for the host’s health and disease. Gut microbiota in fact plays a crucial role in modulating innate and acquired immune responses and thus interferes with the fragile balance inflammation versus tolerance.

Main body

Correlations between gut bacteria composition and the severity of inflammation have been studied in inflammatory bowel diseases. More recently similar alterations in the gut microbiota have been reported in patients with spondyloarthritis, whereas in rheumatoid arthritis an accumulating body of evidence evokes a pathogenic role for the altered oral microbiota in disease development and course. In the context of dysbiosis it is also important to remember that different environmental factors like stress, smoke and dietary components can induce strong bacterial changes and consequent exposure of the intestinal epithelium to a variety of different metabolites, many of which have an unknown function. In this perspective, and in complex disorders like autoimmune diseases, not only the genetic makeup, sex and immunologic context of the individual but also the structure of his microbial community should be taken into account.

Conclusions

Here we provide a review of the role of the microbiota in the onset, severity and progression of chronic inflammatory arthritis as well as its impact on the therapeutic management of these patients. Furthermore we point-out the complex interwoven link between gut-joint-brain and immune system by reviewing the most recent data on the literature on the importance of environmental factors such as diet, smoke and stress.
Literature
1.
Arumugam M, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80.PubMedPubMedCentralCrossRef
2.
Ergin A, et al. Impaired peripheral Th1 CD4+ T cell response to Escherichia coli proteins in patients with Crohn’s disease and ankylosing spondylitis. J Clin Immunol. 2011;31(6):998–1009.PubMedCrossRef
3.
Macpherson A, et al. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut. 1996;38(3):365–75.PubMedPubMedCentralCrossRef
4.
Rhee KJ, et al. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol. 2004;172(2):1118–24.PubMedCrossRef
5.
Ivanov II, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.PubMedPubMedCentralCrossRef
6.
Atarashi K, et al. Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature. 2013;500(7461):232–6.PubMedCrossRef
7.
Atarashi K, et al. Induction of colonic regulatory T cells by indigenous clostridium species. Science. 2011;331(6015):337–41.PubMedCrossRef
8.
Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011;29:621–63.PubMedCrossRef
9.
Ma CS, et al. The origins, function, and regulation of T follicular helper cells. J Exp Med. 2012;209(7):1241–53.PubMedPubMedCentralCrossRef
10.
Monach PA, Mathis D, Benoist C. The K/BxN arthritis model. Curr Protoc Immunol. 2008;81:15.22.1–12.
11.
Block KE, et al. Gut microbiota regulates K/BxN autoimmune arthritis through follicular helper T but not Th17 Cells. J Immunol. 2016;196(4):1550–7.PubMedCrossRef
12.
Teng F, et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity. 2016;44(4):875–88.PubMedCrossRef
13.
Maslowski KM, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–6.PubMedPubMedCentralCrossRef
14.
Grainger JR, et al. Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection. Nat Med. 2013;19(6):713–21.PubMedPubMedCentralCrossRef
15.
Zhang X, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905.PubMedCrossRef
16.
Kovacs A, et al. Genotype is a stronger determinant than sex of the mouse gut microbiota. Microb Ecol. 2011;61(2):423–8.PubMedCrossRef
17.
Rashid T, Ebringer A. Autoimmunity in rheumatic diseases is induced by microbial infections via crossreactivity or molecular mimicry. Autoimmune Dis. 2012;2012:539282.PubMedPubMedCentral
18.
Lin P, et al. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS One. 2014;9(8):e105684.PubMedPubMedCentralCrossRef
19.
Rosenbaum JT, Davey MP. Time for a gut check: evidence for the hypothesis that HLA-B27 predisposes to ankylosing spondylitis by altering the microbiome. Arthritis Rheum. 2011;63(11):3195–8.PubMedPubMedCentralCrossRef
20.
Edwards CJ. Commensal gut bacteria and the etiopathogenesis of rheumatoid arthritis. J Rheumatol. 2008;35(8):1477–97.PubMed
21.
van der Heijden IM, et al. Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides. Arthritis Rheum. 2000;43(3):593–8.PubMedCrossRef
22.
Rogier R, Koenders MI, Abdollahi-Roodsaz S. Toll-like receptor mediated modulation of T cell response by commensal intestinal microbiota as a trigger for autoimmune arthritis. J Immunol Res. 2015;2015:527696.PubMedPubMedCentralCrossRef
23.
Coenen MJ, et al. Genetic variants in toll-like receptors are not associated with rheumatoid arthritis susceptibility or anti-tumour necrosis factor treatment outcome. PLoS One. 2010;5(12):e14326.PubMedPubMedCentralCrossRef
24.
Lee YH, et al. Toll-like receptor polymorphisms and rheumatoid arthritis: a systematic review. Rheumatol Int. 2014;34(1):111–6.PubMedCrossRef
25.
Cortes A, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45(7):730–8.PubMedPubMedCentralCrossRef
26.
Ma X, et al. Evidence for genetic association of CARD9 and SNAPC4 with ankylosing spondylitis in a Chinese Han population. J Rheumatol. 2014;41(2):318–24.PubMedCrossRef
27.
Dean LE, et al. Global prevalence of ankylosing spondylitis. Rheumatology (Oxford). 2014;53(4):650–7.CrossRef
28.
Mielants H, et al. The evolution of spondyloarthropathies in relation to gut histology. II. Histological aspects. J Rheumatol. 1995;22(12):2273–8.PubMed
29.
Asquith M, et al. The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best Pract Res Clin Rheumatol. 2014;28(5):687–702.PubMedPubMedCentralCrossRef
30.
Manichanh C, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55(2):205–11.PubMedPubMedCentralCrossRef
31.
Sokol H, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15(8):1183–9.PubMedCrossRef
32.
Sokol H, et al. Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12(2):106–11.PubMedCrossRef
33.
Sartor RB, et al. Animal models of intestinal and joint inflammation. Baillieres Clin Rheumatol. 1996;10(1):55–76.PubMedCrossRef
34.
Hacquard-Bouder C, Ittah M, Breban M. Animal models of HLA-B27-associated diseases: new outcomes. Joint Bone Spine. 2006;73(2):132–8.PubMedCrossRef
35.
Rath HC, et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human β2 microglobulin transgenic rats. J Clin Invest. 1996;98(4):945–53.PubMedPubMedCentralCrossRef
36.
Stebbings S, et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology (Oxford). 2002;41(12):1395–401.CrossRef
37.
Stebbings SM, et al. The immune response to autologous bacteroides in ankylosing spondylitis is characterized by reduced interleukin 10 production. J Rheumatol. 2009;36(4):797–800.PubMedCrossRef
38.
Stoll ML, et al. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res Ther. 2014;16(6):486.PubMedPubMedCentralCrossRef
39.
Fahlen A, et al. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res. 2012;304(1):15–22.PubMedCrossRef
40.
Gao Z, et al. Experimental study of electroporation-mediated plasmid gene expression in skin and incisional wound. Zhonghua Zheng Xing Wai Ke Za Zhi. 2008;24(5):390–3.PubMed
41.
Scher JU, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67(1):128–39.PubMedPubMedCentralCrossRef
42.
Vaahtovuo J, et al. Fecal microbiota in early rheumatoid arthritis. J Rheumatol. 2008;35(8):1500–5.PubMed
43.
Liu X, et al. Analysis of fecal lactobacillus community structure in patients with early rheumatoid arthritis. Curr Microbiol. 2013;67(2):170–6.PubMedCrossRef
44.
Chen J, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8(1):43.PubMedPubMedCentralCrossRef
45.
Scher JU, et al. Expansion of intestinal prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202.PubMedPubMedCentralCrossRef
46.
Maeda Y, et al. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol. 2016. doi:10.​1002/​art.​39783.
47.
Dewhirst FE, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17.PubMedPubMedCentralCrossRef
48.
Peterson SN, et al. The dental plaque microbiome in health and disease. PLoS One. 2013;8(3):e58487.PubMedPubMedCentralCrossRef
49.
Wade WG. The oral microbiome in health and disease. Pharmacol Res. 2013;69(1):137–43.PubMedCrossRef
50.
Berthelot JM, et al. Outcome and safety of TNFα antagonist therapy in 475 consecutive outpatients (with rheumatoid arthritis or spondyloarthropathies) treated by a single physician according to their eligibility for clinical trials. Joint Bone Spine. 2010;77(6):564–9.PubMedCrossRef
51.
McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19.PubMedCrossRef
52.
Rosenstein ED, et al. Hypothesis: the humoral immune response to oral bacteria provides a stimulus for the development of rheumatoid arthritis. Inflammation. 2004;28(6):311–8.PubMedCrossRef
53.
McGraw WT, et al. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect Immun. 1999;67(7):3248–56.PubMedPubMedCentral
54.
Quirke AM, et al. Heightened immune response to autocitrullinated Porphyromonas gingivalis peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis. Ann Rheum Dis. 2014;73(1):263–9.PubMedCrossRef
55.
Wegner N, et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 2010;62(9):2662–72.PubMedPubMedCentralCrossRef
56.
Dissick A, et al. Association of periodontitis with rheumatoid arthritis: a pilot study. J Periodontol. 2010;81(2):223–30.PubMedCrossRef
57.
Mercado FB, et al. Relationship between rheumatoid arthritis and periodontitis. J Periodontol. 2001;72(6):779–87.PubMedCrossRef
58.
Scher JU, et al. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum. 2012;64(10):3083–94.PubMedPubMedCentralCrossRef
59.
Lange L, et al. Symptoms of periodontitis and antibody responses to Porphyromonas gingivalis in juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2016;14(1):8.PubMedPubMedCentralCrossRef
60.
Queiroz-Junior CM, et al. Experimental arthritis triggers periodontal disease in mice: involvement of TNF-α and the oral microbiota. J Immunol. 2011;187(7):3821–30.PubMedCrossRef
61.
Ortiz P, et al. Periodontal therapy reduces the severity of active rheumatoid arthritis in patients treated with or without tumor necrosis factor inhibitors. J Periodontol. 2009;80(4):535–40.PubMedPubMedCentralCrossRef
62.
Savioli C, et al. Persistent periodontal disease hampers anti-tumor necrosis factor treatment response in rheumatoid arthritis. J Clin Rheumatol. 2012;18(4):180–4.PubMed
63.
Salemi S, et al. Could early rheumatoid arthritis resolve after periodontitis treatment only?: case report and review of the literature. Medicine (Baltimore). 2014;93(27):e195.CrossRef
64.
Karlson EW, Deane K. Environmental and gene-environment interactions and risk of rheumatoid arthritis. Rheum Dis Clin North Am. 2012;38(2):405–26.PubMedPubMedCentralCrossRef
65.
Stolt P, et al. Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases. Ann Rheum Dis. 2003;62(9):835–41.PubMedPubMedCentralCrossRef
66.
Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J. 2001;17(5):946–53.PubMedCrossRef
67.
Pryor WA, et al. Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage. Chem Res Toxicol. 1998;11(5):441–8.PubMedCrossRef
68.
Hughes DA, et al. Numerical and functional alterations in circulatory lymphocytes in cigarette smokers. Clin Exp Immunol. 1985;61(2):459–66.PubMedPubMedCentral
69.
Tracy RP, et al. Lifetime smoking exposure affects the association of C-reactive protein with cardiovascular disease risk factors and subclinical disease in healthy elderly subjects. Arterioscler Thromb Vasc Biol. 1997;17(10):2167–76.PubMedCrossRef
70.
Moszczynski P, et al. Immunological findings in cigarette smokers. Toxicol Lett. 2001;118(3):121–7.PubMedCrossRef
71.
Onozaki K. Etiological and biological aspects of cigarette smoking in rheumatoid arthritis. Inflamm Allerg Drug Targets. 2009;8(5):364–8.CrossRef
72.
Heliovaara M, et al. Smoking and risk of rheumatoid arthritis. J Rheumatol. 1993;20(11):1830–5.PubMed
73.
Karlson EW, et al. Gene-environment interaction between HLA-DRB1 shared epitope and heavy cigarette smoking in predicting incident rheumatoid arthritis. Ann Rheum Dis. 2010;69(1):54–60.PubMedCrossRef
74.
Sugiyama D, et al. Impact of smoking as a risk factor for developing rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis. 2010;69(1):70–81.PubMedCrossRef
75.
Ruiz-Esquide V, et al. Anti-citrullinated peptide antibodies in the serum of heavy smokers without rheumatoid arthritis. A differential effect of chronic obstructive pulmonary disease? Clin Rheumatol. 2012;31(7):1047–50.PubMedCrossRef
76.
Abhishek A, et al. Anti-TNF-α agents are less effective for the treatment of rheumatoid arthritis in current smokers. J Clin Rheumatol. 2010;16(1):15–8.PubMedCrossRef
77.
Hyrich KL, et al. Predictors of response to anti-TNF-α therapy among patients with rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register. Rheumatology (Oxford). 2006;45(12):1558–65.CrossRef
78.
Saevarsdottir S, et al. Patients with early rheumatoid arthritis who smoke are less likely to respond to treatment with methotrexate and tumor necrosis factor inhibitors: observations from the epidemiological investigation of rheumatoid arthritis and the Swedish rheumatology register cohorts. Arthritis Rheum. 2011;63(1):26–36.PubMedCrossRef
79.
Ruiz-Esquide V, Sanmarti R. Tobacco and other environmental risk factors in rheumatoid arthritis. Reumatol Clin. 2012;8(6):342–50.PubMedCrossRef
80.
Shchipkova AY, Nagaraja HN, Kumar PS. Subgingival microbial profiles of smokers with periodontitis. J Dent Res. 2010;89(11):1247–53.PubMedPubMedCentralCrossRef
81.
Zambon JJ, et al. Cigarette smoking increases the risk for subgingival infection with periodontal pathogens. J Periodontol. 1996;67(10 Suppl):1050–4.PubMedCrossRef
82.
Biedermann L, et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One. 2013;8(3):e59260.PubMedPubMedCentralCrossRef
83.
Lin A, et al. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS One. 2013;8(1):e53838.PubMedPubMedCentralCrossRef
84.
Schnorr SL, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014;5:3654.PubMedPubMedCentralCrossRef
85.
Salonen A, de Vos WM. Impact of diet on human intestinal microbiota and health. Annu Rev Food Sci Technol. 2014;5:239–62.PubMedCrossRef
86.
De Filippo C, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107(33):14691–6.PubMedPubMedCentralCrossRef
87.
David LA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.PubMedCrossRef
88.
Cotillard A, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–8.PubMedCrossRef
89.
Hagen KB, et al. Dietary interventions for rheumatoid arthritis. Cochrane Database Syst Rev. 2009;1:CD006400.PubMed
90.
Kjeldsen-Kragh J, et al. Controlled trial of fasting and one-year vegetarian diet in rheumatoid arthritis. Lancet. 1991;338(8772):899–902.PubMedCrossRef
91.
Skoldstam L, Hagfors L, Johansson G. An experimental study of a Mediterranean diet intervention for patients with rheumatoid arthritis. Ann Rheum Dis. 2003;62(3):208–14.PubMedPubMedCentralCrossRef
92.
Holst-Jensen SE, et al. Treatment of rheumatoid arthritis with a peptide diet: a randomized, controlled trial. Scand J Rheumatol. 1998;27(5):329–36.PubMedCrossRef
93.
Kavanaghi R, et al. The effects of elemental diet and subsequent food reintroduction on rheumatoid arthritis. Br J Rheumatol. 1995;34(3):270–3.PubMedCrossRef
94.
Calder PC, Deckelbaum RJ. Omega-3 fatty acids: time to get the messages right! Curr Opin Clin Nutr Metab Care. 2008;11(2):91–3.PubMedCrossRef
95.
Miles EA, Calder PC. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br J Nutr. 2012;107(Suppl 2):S171–84.PubMedCrossRef
96.
De Caterina R, et al. The omega-3 fatty acid docosahexaenoate reduces cytokine-induced expression of proatherogenic and proinflammatory proteins in human endothelial cells. Arterioscler Thromb. 1994;14(11):1829–36.PubMedCrossRef
97.
Kolahi S, et al. Fish oil supplementation decreases serum soluble receptor activator of nuclear factor-kappa B ligand/osteoprotegerin ratio in female patients with rheumatoid arthritis. Clin Biochem. 2010;43(6):576–80.PubMedCrossRef
98.
Lo CJ, et al. Fish oil augments macrophage cyclooxygenase II (COX-2) gene expression induced by endotoxin. J Surg Res. 1999;86(1):103–7.PubMedCrossRef
99.
Lo CJ, et al. Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the NF κ B activity. J Surg Res. 1999;82(2):216–21.PubMedCrossRef
100.
Trebble T, et al. Inhibition of tumour necrosis factor-α and interleukin 6 production by mononuclear cells following dietary fish-oil supplementation in healthy men and response to antioxidant co-supplementation. Br J Nutr. 2003;90(2):405–12.PubMedCrossRef
101.
Ierna M, et al. Supplementation of diet with krill oil protects against experimental rheumatoid arthritis. BMC Musculoskelet Disord. 2010;11:136.PubMedPubMedCentralCrossRef
102.
Leslie CA, et al. Dietary fish oil modulates macrophage fatty acids and decreases arthritis susceptibility in mice. J Exp Med. 1985;162(4):1336–49.PubMedCrossRef
103.
Canning MO, et al. 1-α,25-Dihydroxyvitamin D3 (1,25(OH)(2)D(3)) hampers the maturation of fully active immature dendritic cells from monocytes. Eur J Endocrinol. 2001;145(3):351–7.PubMedCrossRef
104.
Cantorna MT, Hayes CE, DeLuca HF. 1,25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J Nutr. 1998;128(1):68–72.PubMed
105.
Feser M, et al. Plasma 25, OH vitamin D concentrations are not associated with rheumatoid arthritis (RA)-related autoantibodies in individuals at elevated risk for RA. J Rheumatol. 2009;36(5):943–6.PubMedPubMedCentralCrossRef
106.
Patel S, et al. Association between serum vitamin D metabolite levels and disease activity in patients with early inflammatory polyarthritis. Arthritis Rheum. 2007;56(7):2143–9.PubMedCrossRef
107.
Dhabhar FS, McEwen BS. Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci USA. 1999;96(3):1059–64.PubMedPubMedCentralCrossRef
108.
Selye H. A syndrome produced by diverse nocuous agents. Nature. 1936;138:32.CrossRef
109.
Dobbin JP, et al. Cytokine production and lymphocyte transformation during stress. Brain Behav Immun. 1991;5(4):339–48.PubMedCrossRef
110.
Kiecolt-Glaser JK, et al. Psychosocial modifiers of immunocompetence in medical students. Psychosom Med. 1984;46(1):7–14.PubMedCrossRef
111.
Lupien SJ, et al. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10(6):434–45.PubMedCrossRef
112.
McCray CJ, Agarwal SK. Stress and autoimmunity. Immunol Allerg Clin North Am. 2011;31(1):1–18.CrossRef
113.
Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130(4):601–30.PubMedPubMedCentralCrossRef
114.
Freier E, et al. Decrease of CD4(+)FOXP3(+) T regulatory cells in the peripheral blood of human subjects undergoing a mental stressor. Psychoneuroendocrinology. 2010;35(5):663–73.PubMedCrossRef
115.
Pedersen AF, Zachariae R, Bovbjerg DH. Psychological stress and antibody response to influenza vaccination: a meta-analysis. Brain Behav Immun. 2009;23(4):427–33.PubMedCrossRef
116.
Herrmann M, Scholmerich J, Straub RH. Stress and rheumatic diseases. Rheum Dis Clin North Am. 2000;26(4):737–63.PubMedCrossRef
117.
Persson LO, Berglund K, Sahlberg D. Psychological factors in chronic rheumatic diseases—a review. The case of rheumatoid arthritis, current research and some problems. Scand J Rheumatol. 1999;28(3):137–44.PubMedCrossRef
118.
Wolfe F, Pincus T. Listening to the patient: a practical guide to self-report questionnaires in clinical care. Arthritis Rheum. 1999;42(9):1797–808.PubMedCrossRef
119.
Dekkers JC, et al. Biopsychosocial mediators and moderators of stress-health relationships in patients with recently diagnosed rheumatoid arthritis. Arthritis Rheum. 2001;45(4):307–16.PubMedCrossRef
120.
Jacobs R, et al. Systemic lupus erythematosus and rheumatoid arthritis patients differ from healthy controls in their cytokine pattern after stress exposure. Rheumatology (Oxford). 2001;40(8):868–75.CrossRef
121.
van der Voort CR, et al. Noradrenaline induces phosphorylation of ERK-2 in human peripheral blood mononuclear cells after induction of α(1)-adrenergic receptors. J Neuroimmunol. 2000;108(1–2):82–91.CrossRef
122.
Conway SC, Creed FH, Symmons DP. Life events and the onset of rheumatoid arthritis. J Psychosom Res. 1994;38(8):837–47.PubMedCrossRef
123.
Kopec JA, Sayre EC. Traumatic experiences in childhood and the risk of arthritis: a prospective cohort study. Can J Public Health. 2004;95(5):361–5.PubMed
124.
Thomason BT, et al. The relation between stress and disease activity in rheumatoid arthritis. J Behav Med. 1992;15(2):215–20.PubMedCrossRef
125.
Zautra AJ, et al. Daily fatigue in women with osteoarthritis, rheumatoid arthritis, and fibromyalgia. Pain. 2007;128(1–2):128–35.PubMedCrossRef
126.
Potter PT, et al. Interpersonal workplace stressors and well-being: a multi-wave study of employees with and without arthritis. J Appl Psychol. 2002;87(4):789–96.PubMedCrossRef
127.
Neufeld KM, et al. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23(3):255–64.CrossRefPubMed
128.
Nishino R, et al. Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil. 2013;25(6):521–8.PubMedCrossRef
129.
Park AJ, et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil. 2013;25(9):733-e575.PubMedPubMedCentralCrossRef
130.
Topol IA, et al. Expression of XBP1 in lymphocytes of the small intestine in rats under chronic social stress and modulation of intestinal microflora composition. Fiziol Zh. 2014;60(2):38–44.PubMed
131.
Naseribafrouei A, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 2014;26(8):1155–62.PubMedCrossRef
132.
Jeffery IB, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61(7):997–1006.PubMedCrossRef
133.
Lee KJ, Tack J. Altered intestinal microbiota in irritable bowel syndrome. Neurogastroenterol Motil. 2010;22(5):493–8.PubMedCrossRef
134.
Tana C, et al. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil. 2010;22(5):512–9.PubMed
135.
D’Mello C, et al. Probiotics improve inflammation-associated sickness behavior by altering communication between the peripheral immune system and the brain. J Neurosci. 2015;35(30):10821–30.PubMedCrossRef
136.
Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66(5):365–78.PubMedCrossRef
137.
WHO. Probiotics in food - Food and Agriculture Organization of the United Nations. http://​ftp.​fao.​org/​docrep/​fao/​009/​a0512e/​A0512E00.​pdf. 2006.
138.
So JS, et al. Lactobacillus casei suppresses experimental arthritis by down-regulating T helper 1 effector functions. Mol Immunol. 2008;45(9):2690–9.PubMedCrossRef
139.
So JS, et al. Lactobacillus casei potentiates induction of oral tolerance in experimental arthritis. Mol Immunol. 2008;46(1):172–80.PubMedCrossRef
140.
Amdekar S, et al. Lactobacillus casei reduces the inflammatory joint damage associated with collagen-induced arthritis (CIA) by reducing the pro-inflammatory cytokines: Lactobacillus casei: COX-2 inhibitor. J Clin Immunol. 2011;31(2):147–54.PubMedCrossRef
141.
Mandel DR, Eichas K, Holmes J. Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial. BMC Complement Altern Med. 2010;10:1.PubMedPubMedCentralCrossRef
142.
Pineda Mde L, et al. A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis. Med Sci Monit. 2011;17(6):CR347–54.PubMed
143.
Vaghef-Mehrabany E, et al. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition. 2014;30(4):430–5.PubMedCrossRef
144.
Sanges M, et al. Probiotics in spondyloarthropathy associated with ulcerative colitis: a pilot study. Eur Rev Med Pharmacol Sci. 2009;13(3):233–4.PubMed
145.
Jenks K, et al. Probiotic therapy for the treatment of spondyloarthritis: a randomized controlled trial. J Rheumatol. 2010;37(10):2118–25.PubMedCrossRef
146.
Berntson L, Hedlund-Treutiger I, Alving K. Anti-inflammatory effect of exclusive enteral nutrition in patients with juvenile idiopathic arthritis. Clin Exp Rheumatol. 2016 [Epub ahead of print].
147.
Karin M, Jobin C, Balkwill F. Chemotherapy, immunity and microbiota–a new triumvirate? Nat Med. 2014;20(2):126–7.PubMedPubMedCentralCrossRef
148.
Iida N, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–70.PubMedCrossRef
149.
Viaud S, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6.PubMedPubMedCentralCrossRef
150.
Das KM, et al. The metabolism of salicylazosulfapyridine in ulcerative colitis. I. The relationship between metabolites and the response to treatment in inpatients. Gut. 1973;14(8):631–41.PubMedPubMedCentralCrossRef
151.
Peppercorn MA, Goldman P. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharmacol Exp Ther. 1972;181(3):555–62.PubMed
152.
Lee HJ, et al. The effects of an orally administered probiotic on sulfasalazine metabolism in individuals with rheumatoid arthritis: a preliminary study. Int J Rheum Dis. 2010;13(1):48–54.PubMedCrossRef
153.
Rajca S, et al. Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm Bowel Dis. 2014;20(6):978–86.PubMed